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CHAPTER I 

INTRODUCTION 

A. NDE • General Considerations 

Ever since people realized that they and their products may fail, they 

have recognized a need to inspect their products in order to prevent failures. 

These failures are related not only to economic losses but also to human lives 

and environmental issues. 

There are two large groups of testing methods; one is destructive and 

the other is nondestructive. Destructive testing falls into two basic categories. 

The first is limit testing to the equipment's failure point, to ascertain safety 

margins and the most extreme conditions under which the equipment will 

perform its basic functions. The other is environmental testing under real 

life conditions, to see how reliably the equipment can withstand the rough 

handling of transportation, installation, and operation [1]. While the results 

of the destructive tests often end up in the dumpster, the requirement of 

nondestructive testing (NDT) is to inspect and evaluate materials or products 

without adversely affecting their serviceability [2], In this respect, the 

practical benefits of nondestructive inspection are obvious, as long as the 

results are reliable and the inspection is cost-effective. Also, compared to 

conventional destructive testing on only a selected sample of the product, NDT 

techniques can be used on every sample to find random defects and 

discontinuities. 
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NDT serves not only to ensure quality in manufacturing processes but 

also to monitor the reliability and safety of the product after continued use, 

throughout its operational life. Because of this extended application and the 

expanded role of making accept/reject decisions, a newer term, 'non­

destructive evaluation (NDE)' is coming into use [3]. Sometimes the two 

terms are used equally and interchangeably, while on other occasions they 

are not. NDT implies the testing procedure itself, whereas NDE involves the 

subsequent description of any detected flaws. From this, a decision is made 

on the serviceability of the tested item based on predefined standards or 

background knowledge. This decision is made by the designer so that it is 

very important for him/her to have such knowledge. A properly conducted 

design, as an another example, should ensure that an object is made in such 

a way so as to facilitate the use of the selected methods of testing. With the 

development of data analysis by computer together with pattern recognition 

and neural network methods, it is possible to analyze NDT data directly, in 

terms of component acceptability, so that the equipment can be programmed 

to produce a decision. These methods should therefore be described as NDE 

rather than NDT. In this dissertation, however, the term NDE is adopted 

because it generally represents the broadest definition of both testing and 

evaluation. 

An important aid for monitoring and decision making is the use of 

computer modeling techniques to predict relationships between defect size 

and the signal indicated by an appropriate detector. These techniques are also 

of great value in the design of NDT instrumentation and the choice of its 

optimum operating conditions [4]. 
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NDE has gained in importance as a result of the rapid technological 

progress made during the past half-century in areas such as aerospace and 

nuclear energy, in which there are high risks, and strict precautions are 

required to avoid catastrophic failure. It also forms a vital part of programs 

in various industries such as oil and gas, transportation and ordnance. In 

order to meet the requirements of the diverse range of applications, a variety 

of basic physical principles have been used for NDE. In general, all methods 

of NDE rely on some form of energy as a probing source to interact with the 

specimen under test and produce an output response signal which is then 

analyzed and interpreted in terms of specimen properties [5]. A general NDE 

procedure can be summarized in five essential steps as shown in Figure 1.1. 

Input transducer 

Energy/defect 

Output 
Output transducer 

Storage 

Signal 

Processing 

Test Specimen 

Source 

Energy 

Data Display 

Decision 
Algorithm 

Figure 1.1. The generic NDE system (after Lord [5] ) 
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In practical situations, the interpretation of the output signal is the most 

important problem as the signal carries information about the defect. The 

size, shape and location of the defect, material inhomogeneities and property 

variations will affect the signal. This problem of deducing the defect 

information from the signal, commonly referred to as the inverse problem', 

is central in NDE and it can only be solved satisfactorily if appropriate 

theoretical models are developed, which are capable of generating defect 

signals given a certain defect size, shape and location (i.e. forward problem). 

This forward problem is therefore equally important in that it provides 

valuable training data for the inverse problem. Defect modeling studies are 

consequently very important since it is extremely difficult to replicate 

realistic defect shapes in a laboratory environment and it is seldom possible 

to describe energy/defect interaction in a closed form due to the presence of 

defects [6]. In addition, these models provide valuable insight into the nature 

of the physics involved in the interaction. 

In general, the various NDE techniques can be placed into two 

categories: passive and active [7], The passive techniques are those that 

monitor the item in question during a typical load environment and attempt 

to determine the presence of a defect through some reaction of the specimen. 

Acoustic emission, noise analysis, leak testing, visual inspection, and some 

residual magnetic flux leakage methods fall into this category. The active 

techniques, on the other hand, are those where something is introduced into 

or onto the specimen and a response is expected if a defect is present. 

Electromagnetic methods, ultrasonic methods and radiographic methods fall 

into this category. This dissertation, however, confines its attention to 
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electromagnetic methods in general and concentrates on the active magnetic 

flux leakage method in particular. 

The choice of the method of testing depends on factors such as the type of 

material and its dimensions, the environment, the positions of interest within 

the structure or component under examination, e.g. whether internal or 

surface defects are sought, and the suitability for data acquisition and 

processing. For example, the magnetic method has been known to be more 

useful than the ultrasonic methods in the case of oil pipeline inspection since 

the nonhomogeneous wax products inside the oil pipe can have a significant 

attenuating effect on ultrasonic signals and the ultrasonic method cannot 

cope with thin wall pipes [8]. In general, a combination of two or even more 

methods may be required for the complete inspection of an object. This does 

not imply that they may be regarded as being alternative techniques because 

one of the methods can be used to complement another or to verify the 

findings of the other. Whatever methods are used, even when pre-specified, 

the test specimen should first be thoroughly inspected by eye and by touch 

because valuable equipment and time may be wasted in locating defects that 

could easily be identified with the unaided eye and hand in the first instance. 

B. Electromagnetic NDE 

Traditional electromagnetic NDE methods include magnetic particle 

inspection, the magnetic flux leakage method, eddy current methods, DC and 

AC potential drop methods, and the microwave method. Magnetic particle 

and magnetic flux methods are normally used only for testing ferromagnetic 
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materials. The eddy current methods are normally restricted to the testing of 

good electrical conductors. Microwave testing is usually restricted to 

examining dielectric materials but potential drop methods can be used for 

testing semiconductors as well as good electrical conductors. These methods 

cover a wide range of frequencies from DC to microwave. However, the 

common industrial techniques are limited to active DC, residual and eddy 

current forms of excitation; all low frequency phenomena for which 

displacement current effects can be neglected [6]. These can best be described 

by their relation on the B/H characteristic curve as shown in Figure 1.2. 

In the active magnetic flux leakage test [9-12], a test specimen is 

magnetized by passing an appropriate value of DC current through it, thus 

setting up a magnetic field governed by the Maxwell-Ampere law. 

=Jj J-cl? (1.1) 

The presence of a defect in a magnetized ferromagnetic material results in a 

redistribution of magnetic flux lines in the vicinity of the flaw, causing some 

of these flux lines to leak out into the surrounding medium. This is because 

the flaws represent an increase in reluctance to the magnetic flux lines [13]. 

In the course of excitation, each point in the specimen is magnetized to 

different H values (points 'A' through 'C') along the initial magnetization 

curve in Figure 1.2.a). 

When the driving current is removed, the working points of each 

internal element relax to either a remanent flux density point or, in the case 

of those elements close to an open defect, to a point in the second quadrant of 

the material's B/H loop (Figure 1.2.b). A defect can then be viewed as a 

permanent magnet with residual leakage flux from the defect surfaces 
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Figiire 1.2. Classification of low frequency electromagnetic NDE 
methods; a) Active magnetic flux leakage field, 
b) Residual leakage field, c) Eddy current 
(after Lord [6] and Heath [15] ) 
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extending into the surrounding atmosphere [13]. The treatment of this 

residual leakage field requires a careful consideration of the demagnetization 

process [14-17]. 

Both the active and residual leakage fields can be picked up by scanning 

the surface with any flux sensitive transducer such as a Hall element [18,19], 

magnetic tape [20,21], or a coil [22]. Traditionally, magnetic particles have 

been used for residual cases because of their inherent sensitivity and the 

simplicity of the test, but the results tend to be qualitative rather than 

quantitative and do not lend themselves readily to automation in the signal 

processing sense [13]. A typical Hall probe active leakage field profile 

obtained by measuring the normal component of the leakage fields around a 

rectangular slot is given in Figure 1.3. 

FLUX 
DENSITY 

& 

DC CURRENT 
FLOW DIRECTION OF 

MAGNETIC FLUX 

Figure 1.3. Active leakage field profile around a rectangular slot 
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In the active magnetic flux leakage test, care has to be taken to ensure 

that the direction of the resultant field is normal to the defect orientation. 

Another difficulty is the problem associated with handling the high DC 

current needed to magnetize large ferromagnetic specimens. To eliminate 

such problems, many techniques have been developed for inducing a 

magnetic field within a specimen by non-contacting means [23-26]. These 

non-contacting methods are also very helpful in saving inspection time. One 

of the techniques developed is the use of a variable reluctance probe [26]. The 

explanation of this probe is given in section A, Chapter II. 

In eddy current methods [2,4,27-31], a low fi*equency (typically below 10 

MHz) electromagnetic field produced by a coil carrying an alternating 

current, forms the probing source. The excitation levels are usually low and 

therefore for ferromagnetic materials, the operating point is around the 

origin of the B/H curve (Figure 1.2.c). When the coil is brought close to an 

electrically conducting test object, the time-varying magnetic field interacts 

with the test object according to the IMaxwell-Faraday law, 

jÊdï = -\\Bds (1.2) 

thus inducing eddy currents in the medium. These secondary currents 

produce their own magnetic field which opposes the changes in primary field 

in accordance with Lenz's law. In the case of a nonferromagnetic specimen, 

this results in a reduction in the net flux linkages associated with the coil 

which, by definition, reduces the inductance of the coil. The resistance of the 

coil, on the other hand, increases because of eddy current losses within the 

material. The impedance of the excitation coil in air would therefore be 

different from that of the coil in the vicinity of the specimen. For 
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ferromagnetic materials, counteracting the decrease in inductance due to the 

influence of eddy currents induced in the specimen is the increase in 

inductance owing to the higher permeability of the material. The latter effect 

is more predominant and consequently the inductance of the coil increases 

when it is brought close to a ferromagnetic specimen. The change in 

inductance is accompanied by an increase in resistance due to the eddy 

current losses. Since the eddy current distribution is influenced by 

discontinuities or anomalies in the material thereby changing the total flux 

linkages and altering the impedance of the coil, all the electromagnetic 

properties of the test specimen are reflected back into the impedance of the 

coil. The changes in the complex probe impedance can be measured by an 

appropriate AC bridge as shown in Figure 1.4 and these measurement can 

be analyzed to estimate the surface and bulk properties of the specimen. 

A.C. 
SOURC 

TEST OBJECT 

Figure 1.4. Measurement of eddy current probe impedance changes 
(after Udpa [31] ) 
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In practice, the variation of impedance is often displayed on a two 

dimensional complex plane. Since the horizontal and vertical data can be 

interpreted as the resistive and reactive components respectively of the 

complex impedance under steady state AC conditions, the eddy current test 

signal obtained is referred to as the impedance plane trajectory. Figure 1.5 

shows the liftoff impedance plane trajectories of a coil over nonferromagnetic 

and ferromagnetic specimens [32]. 

STEEL 4340 

5 

i 
I-) 

8 

(a) MAGNETIC 

(b) NONMAGNETIC 

7075 AI 

PROBE TO PART 
SPACING IN MILS - 0.001 IN. 

(0 025 mm) 

COIL RESISTANCE (1) 

Figure 1.5. Liftoff impedance plane trsgectory of a coil over a 
a) Ferromagnetic specimen, 
b) Nonferromagnetic specimen 
(after Hagemaier [32] ) 
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However, there are some difficulties in using an absolute coil. The 

factors that affect the eddy current characteristics are not only material and 

dimensional properties but also coil properties such as magnitude and 

frequency of the excitation current, geometry of the coil, liftoff, and core 

material properties. This abundance of properties affecting the test means 

that the effects of multiple properties may be superimposed. Isolating the 

effect of one particular property can be very difficult. The coil impedance 

changes due to defects are often veiy small compared to the quiescent value of 

the coil impedance and these are superimposed, so that it can also be difficult 

to detect such small changes. Changes in the coil parameters due to 

environmental effects (e.g. temperature variations) can often mask changes 

due to defects, making signal interpretation very difficult. For this reason, 

many methods have been developed, among them the use of phase sensitive 

techniques [33], pulsed excitation [34,35], and multi-frequency and multi­

parameter methods [36,37]. A variation of the absolute probe, which also 

overcomes these difficulties, is the differential eddy current probe and the 

details of this probe are given in section B, Chapter II. 

Another difficulty in eddy current testing is due to the skin effect 

phenomenon. The skin effect restricts the deep penetration of eddy currents 

into conducting, ferromagnetic materials so that the conventional eddy 

current method is classified as a surface defect detection technique. In the 

testing of underground pipelines, where an inner diameter (I.D.) eddy 

current probe is preferred due to the limitation of accessibility, this effect may 

limit the eddy current method to the detection of I.D. defects and prevent the 

detection of outer diameter (O.D.) defects if the wall thickness of the pipe is 
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large enough. For this reason, the magnetic saturation technique using a 

permanent magnet has been developed to reduce the relative permeability of 

the tube to unity and increase the penetration depth [38]. Another 

breakthrough is the use of the remote field eddy current technique which is 

equally sensitive to both I.D. and O.D. defects. The remote field eddy current 

probe is explained in section C, Chapter II. 

All the methods to be discussed in this dissertation employ non-

contacting probes and they are the variable reluctance probe (active magnetic 

flux leakage method), the differential eddy current probe and the remote field 

eddy current probe (eddy current methods). These probes have been used in 

heat exchanger tubing and oil/gas pipeline inspection, so that the geometries 

of interest are axisymmetric. 

C. Velocity Effects of Electromagnetic NDEPiobe 

The fact that most electromagnetic NDE tests can be carried out in a 

noncontact way permits rapid, moving inspection. Traditionally, in-line 

inspection of oil and gas pipeline is accomplished by a pig [39] which consists 

of permanent magnets to magnetize the pipe, measuring equipment and 

signal recording devices. This pig is pumped from one compressor station to 

the next, which may be up to 100 Km away [40,41]. Typical pig speeds used in 

pipeline inspection are from 4 to 5 meters per second in the magnetic flux 

leakage method [8]. Even though eddy current methods do not use high speed 

(up to 1 to 2 feet per second), the remote field eddy current probe for oil and 

gas pipeline inspection [41-44], is expected to use high speeds for testing miles 



www.manaraa.com

14 

of long pipelines. However, employing these fast speeds requires careful 

study as moving magnetic fields induce aVxB currents (motional induction) 

in all exposed conducting surfaces, thus affecting the NDE signals. For 

example, the magnetic flux leakage method, which is mainly concerned with 

the inspection of ferromagnetic material, is known to be oversensitive to the 

velocity of the inspection vehicle [8]. To model actual field testing situations, it 

is therefore necessary to include such probe velocity effects in the 

energy/defect interaction models for correct interpretation of the NDE 

signals. 

The investigation of probe velocity effects was a part of the parameter 

variation studies in the AGA (American gas association) project on the 

remote field eddy current effect [43]. Recently, GRI (The Gas Research 

Institute) has established an NDE research and development program on the 

characterization of magnetic flux leakage indications recorded during in-line 

inspection. The first task is the identification and investigation of the effects 

of operational variables, including the test rig velocity [45]. Work has been 

done on probe velocity effects in NDE [40,46-55]. However, most research on 

moving magnetic field problems has been carried out in other areas rather 

than NDE, such as electric machinery [56-62], electromagnetic lévitation [63-

78], electromagnetic launcher [78-81], and electromagnetic brakes [82,83]. A 

review of previous approaches should, therefore, include their treatment of 

motional induction phenomena. Before this, a discussion of the numerical 

methods is in order since a majority of the reports resort to numerical 

techniques for their analysis. 
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D. General Considerations on Numerical Methods 

Basic electromagnetic NDE phenomena can be fully described by the 

classical Maxwell equations [84,85]. Magnetostatic NDE such as magnetic 

particle, magnetic flux leakage, perturbation, variable reluctance and DC 

potential drop methods are described by either Laplace or Poisson equations, 

all elliptic partial differential equations. Quasi-static NDE includes single 

frequency, multi-frequency, pulsed and remote field eddy current techniques 

and all operate at excitation frequencies well below the region where 

displacement current densities are a factor, thus resulting in a parabolic 

diffusion equation. In a steady state AC situation, the parabolic governing 

equation can be reduced to an elliptic partial differential equation by using 

phasor notation.. At microwave frequencies, a hyperbolic wave equation 

governs microwave interactions with non-conducting materials such as 

ceramics and composites. However, closed form solutions to the above 

equations are available only for very simple shapes or under simplifying 

assumptions. The applications associated with NDE problems such as 

frequency dependency, nonlinear material properties, and complex 

boundaries render such analytical approaches impossible. 

Considering inverse problems, ideal training data are those from 

experiments using defects of known sizes and shapes. In reality, the 

optimization of a new test requires a series of experiments, often too difficult 

or expensive to replicate in a laboratory environment. Also, many variables 

involved in a test make even the simplest test hard to design. 
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Some numerical methods are however inherently flexible and capable of 

producing training data in which material nonlinearities and awkward 

boundaries are already taken into account. They are also of great value in the 

design of NDT instrumentation and the choice of its optimum operating 

conditions. Most importantly, they provide valuable insight into the 

underlying physics involved in the energy/defect interaction. One example of 

this is the interpretation of remote field eddy current phenomena [41]. 

Remote field eddy current technique has been used for more than 30 years 

and the interpretation of experimental observations had been based on an 

hypothesis until the early 1980s. The hypothesis states that there are two 

possible energy-coupling mechanisms between the exciter coil and an 

internal detector; one is direct coupling near the exciter and the other is 

indirect coupUng occurs beyond about 1.8 pipe diameters from the exciter as a 

result of the through-transmission of eddy currents. This hypothesis was 

later confirmed and new phenomena ('potential valley' and phase knot' 

explained in section C, Chapter II) were found inside the pipe wall by the 

application of the finite element method in a relatively short time [41,43]. 

Experimental means would never have found such phenomena inside the 

pipe wall. 

There are several numerical methods that are in use in electromagnetic 

NDE. The oldest is the finite difference method where domains and 

differential operators are replaced by a discrete grid of nodes and difference 

quotients using the Taylor series expansion. The formulated difference 

equations are solved usually by an iterative relaxation scheme to obtain the 

solution at each node [86]. The method suffers from a drawback in that 
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rectangular grids tend to be inefficient when irregular geometries are 

encountered. Increasing the mesh density does not minimize the error 

beyond a certain lower bound in some cases [87]. Moreover, open boundaries 

have to be modeled by a closed boundary with artificial boundary conditions. 

In contrast to analytical mathematics where difierentiation is usually 

considered simpler than integration, in numerical analysis, differentiation is 

more difficult to handle than integration because of stability considerations 

[31]. Based on this observation, the finite element method replaces the 

problem of differentiation by one of minimizing the integration of a functional 

or a weighted residual. The solution region is discretized into elements and 

within each element, the unknown function is approximated by an 

interpolating polynomial. This approximation is substituted into the 

functional or weighted residual and then minimized with respect to every 

nodal value. Actual minimization is performed element by element for 

convenience instead of node by node. These individual element equations are 

combined into a single global matrix equation. Any of the direct solution 

techniques utiHzing the banded nature of the matrix or the iterative solution 

techniques utilizing the sparse nature of the matrix can be used. 

The method is flexible and able to model relatively realistic defects and 

nonlinear material properties, but as is true of all domain methods it has 

some difficulties regarding mesh discretization and boundary conditions, 

especially for large, intricately-shaped 3-D geometries containing relatively 

small defect shapes [88] and open boundaries. To avoid the excessive 

requirement of computer resources, many techniques have been developed 

such as zooming [89], transform of infinite domain [90], infinite elements [91-
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94], ballooning [95], and various formulations utilizing scalar potentials 

[30,96-102]. The problems encountered in the solution of probe velocity effects 

are somewhat similar to those difficulties, in that spurious oscillations occur 

in the solution if the element size is larger than a certain small limit [50]. 

One of the objectives of this dissertation is to remove such oscillations when 

an element size larger than the limit is used. 

Another method which has attracted attention due to its few equations 

for solution (in view of the reduction in dimensionality by 1, such as from a 

volume to a surface or from a surface to a boundary line) and ease in treating 

open boundary problems, is the boundary integral method [86,103-105]. The 

first goal is to generate an equation containing integrals over the boundary of 

the domain of interest. This can be achieved by the application of Green's 

second identity, for example, in two dimensions. 

where n is the normal direction on L, and A and G are substituted for the 

unknown function and the free space Green's function, respectively. Another 

approach is to use a weighted residual formulation and apply integration by 

parts and Green's theorem twice. The Green's function is again used as a 

weighting function. Both methods result in the same boundary integral 

equation. This equation is solved by a numerical technique, called the 

boundary element method. Boundaries, whether a surface or a line, are 

discretized into elements and if there is a source term, the interior of the 

boundary (whether a volume or a surface) also has to be subdivided into a 

second mesh to define the source so that it can be numerically calculated. 

(1.3) 
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From the solutions of A and 9A/9n or any given values at the surface, it is 

possible to obtain, by integration, the solution at any point in space. 

The limitations of this method are such that it can be applied only to 

those problems whose Green's function can be found, the matrix is fully 

populated and unsymmetric so that storage demands are heavy on the 

computing environment. The work involved increases with the number of 

points of interest and when inhomogeneous material is encountered. Also, 

some difficulties are expected in handling nonlinear, anisotropic materials 

as the Green's formulation presupposes the principles of superposition. 

Thus, it is in three-dimensional constant coefficient problems that the 

boundary element method strongly challenges the finite element method. . 

From an NDE perspective, the choice of numerical method depends on 

the NDE technique used. Many NDE applications require solutions at only a 

few points. In this case, the boundary integral approaches are very efficient. 

This is particularly obvious for the potential drop method [106-108] where only 

two field points are needed for an estimation of the potential drop. The 

comment also holds for other electromagnetic NDE methods, as the active 

sensor volume tends to be small compared to the overall testing geometry. 

However, if a major objective is to gain a fuller understanding of the 

underlying physics from the associated field distributions, finite element 

solutions are very useful in that they give full field solutions [85]. Perhaps the 

best choice may be the hybrid finite element-boundary integral methods [109-

111] which exploit the advantages of both methods. That is, the boundary 

integral equations are used in the exterior and the finite element equations in 

the interior of a problem, with some kind of matching at the common 
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boundary. Such an approach could well combine the 3-D modeling capability 

of the boundary integral technique with the power of the finite element 

method to handle nonlinearities and anisotropy. 

The geometries related with NDE research are more complex than 

electric machines or other devices since they include material inhomo-

geneities. For example, the rail geometry of a magnetic lévitation vehicle is 

uniform while the geometry to be modeled in steam generator tubing 

inspection is not uniform due to defects and support plates. This is shown in 

Figure 1.6. 

E. Review of Related Literature 

support plate 

J 1 
tube wall 

defect 

uniform rail 

VR probe 

Magnetic lévitation vehicle 
Inspection of steam 

generator tubing 

Uniform geometry Non-uniform geometry 

Steady state situation Transient situation 

Figure. 1.6. Comparison of uniform and non-uniform geometries 
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When the testing material has uniform geometry, the distribution of 

motionally induced current is always the same regardless of the probe 

position, and thus time, unless the probe velocity changes. This corresponds 

to a steady state situation. However, if the testing material is not uniform, the 

distribution of motionally induced current will be different at each probe 

position, thus at each time. This corresponds to a transient situation if DC or 

low frequency AC is used as an excitation. 

The same observations are made in the literature [70,73,83] where it is 

noted that the steady state solution is possible only in cases in which the 

moving member is homogeneous and of constant cross section in the 

direction of motion. An application which did not consider the difference in 

geometries, can be found in the example of Enokizono's paper [112] where a 

boundary element formulation for a steady state governing equation is 

applied to an NDT geometry with a defect. A correct application is discussed 

in Jaya want's book [76] on electromagnetic lévitation and suspension 

techniques. In the case of a magnetic suspension system, transducers are 

required for the measurement of position, velocity and acceleration. One of 

the transducers used is the inductive transducer which shows an 

overcompensated response when a step change in the rail geometry is 

encountered. Jayawant [76] explains this phenomena as the effect of the eddy 

currents induced in the rail being superimposed on the straightforward 

increase of inductance arising out of airgap reduction. The situation and 

response shown in Figure 1.7, clearly indicate the transient behavior even 

though such a response is not desirable for the measurement of air gap 

distance. Therefore, the study of NDE probe velocity effects should take any 
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Transducer 

g 
I Moving 

Oiilpul 
volts 

Overcompensation when step 
IS at centre of transrtucer 

Figure 1.7. Response of an inductive position transducer to a step in the rail 
(after Jayawant [76] ) 

geometry difference into account. Unfortunately, there has been almost no 

study on probe velocity effects with non-uniform geometries. However, since 

the steady state analysis of a uniform geometry can provide background 

knowledge when relative motion is involved and the transient analysis in that 

situation can readily be used for the nonuniform geometry, those studies are 

reviewed. 

1. Steady State AnaJ^ysis 

In the inspection of an object with uniform geometry by the eddy current 

methods of NDE, the governing steady state equation for probe velocity effects 

can be written as 
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V x — ( V x A )  =  7 y - j(oaA + <jVx(VxA) (1.4) 

where jx, A , Jg , m and c are the magnetic permeability, magnetic vector 

potential, applied current density, excitation frequency and the electrical 

conductivity, respectively. Since the derivation of the governing equation is 

given in Chapter IV, it is shown here without proof. The motional induction 

term appears as the first order spatial derivative. The governing equation is 

that form of convective diffusion equation which is not self-adjoint and has an 

unsymmetric operator due to the motional induction term. In this case, 

diffusion and convection effects compete with each other to govern the 

ensuing solution behavior [113]. It is well known that the standard domain 

numerical approaches, such as the finite difference method and the finite 

element method, show spurious oscillatory results for high magnetic 

Reynolds numbers (Rm = jioVh). To suppress such oscillations, many 

techniques have been developed. These various techniques for solving 

convective diffusion equations by the finite element method and the boundary 

element method are classified into several groups for convenience. 

Mesh refinement 

Employing the standard Galerkin formulation for 1-D, DC case of 

equation (1.4), the elemental matrix for an element of length h is given by 

r 1 (TV 1 aVl 
fih 2 nh 2 
_J__oy 1 ^ aV 

(1.5) 
ixh 2 iih 2 
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where V is the probe velocity. As mentioned earlier, the matrix is 

unsymmetric and if the convection term is larger than the diffusion term, 

spurious oscillations occur [114]. Therefore, the condition for oscillation-free 

results is 1/nh > cV/2. This leads to h < 2/\iàV, the basis of mesh refinement. 

It also shows that the cell magnetic Reynolds number, defined as Rm = |ioVh, 

should be less than 2. In some literature [74], the cell Peclet number instead 

of the cell magnetic Reynolds number is defined for the same purpose, or 

sometimes, it is defined as one half of the cell magnetic Reynolds number 

[71,73]. However, for certain situations, the refinement necessary is so 

excessive that the required computer resources aie unusually large. 

Self-adjoint transformation 

The variational principle always produces a symmetric matrix. This 

symmetry is indeed a precondition for the existence of a variational principle 

and the equivalence between the variational principle and the Galerkin 

method can be established only under this condition [115]. The strange 

results of Ida's paper [116] are due to neglecting this fact where an energy 

functional that cannot be defined for the motional induction term was used 

with an upwinding quadrature point [117]. 

The governing equation is not self-adjoint, so it is not symmetric. 

Therefore, an energy functional approach requires it to be made self-adjoint. 

Usually, this can be done by multiplying some exponential factor to the 

governing equation [118]. Hulbert uses this procedure [119], and the 

exponential factor appears in the functional. Guymon et al. [120,121] 
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introduce another transformation that does not involve exponentials in the 

functional. Such a transformation is 

The equation is first solved for T] and then transformed back to find A. 

However, in general, the presence of the exponential factor with large Rm can 

make the inverse transformation ill-conditioned [122], Also, most computers 

have certain limiting values for the argument of exponential functions. 

Thus, this technique is limited to highly diffusion-dominant transport 

equations only [123]. 

Unwinding technique (Petrov-Galerkin method) 

The upwind scheme has its roots in the behavior of a convection 

dominant fluid. In such cases, a fluid property is determined to a large 

extent by the property prevailing immediately upstream [124]. Hence, the 

name, upwind. In the finite difference method (FDM), the combination of an 

upwind scheme for the convection term and a central difference scheme for 

the diffusion term has been used for stable results, but with some 

disadvantages in accuracy [125]. In the finite element method (FEM), 

upwinding corresponds to a weighted residual method. The standard 

(Bubnov) Galerkin method uses the shape function (Ni) as a weighting 

function (Wi) and reproduces central difference formulas with their inherent 

oscillatory behavior. On the other hand, the upwind scheme for FEM [126,127] 

uses a new, asymmetric weighting function which is biased to the upstream 

condition. It is also called the Petrov-Galerkin method. Figure 1.8 shows the 

(1.6) 
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Wi(x)=Ni(x) WlC) W2(:) 

-1 

Upwinding 
Wi(x) wi(%) W2(4) 

|Ni(x) + aF(x) for element (i-1); i 
Wi(x,a) - |n^(x) - aF(x) for element i; (i+1) 

where F(x) = P Ni(x) N2(x) and J^F(x)ctc = 

Figure 1.8. Comparison of weighting functions 

difference between the two weighting functions. Here, F(x) is some positive 

function, such that F(x) is zero at nodes and, for each element, satisfies the 

following condition. 

j^F(x)ck = ̂ A (1.7) 

Usually, these conditions are satisfied by using the shape functions, Ni(x) 

and N2(x), and the coefficient, P, is decided by equation (1.7). a is the scaling 
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factor ranging from 0 (no upwind, standard Galerkin method) to 1 (full 

upwind, same as FDM), and is positive if the velocity is positive and negative 

if the velocity is negative. The optimal value of a is given as [126] 

This optimal value can be controlled for each element to minimize the error. 

The introduction of such a weighting function results in the additional 

artificial diffusion, i.e. an equivalent increase in the magnetic reluctivity by 

the amount of aoVh/2 [128,129], thus reducing the magnetic Reynolds 

number, R^, and stabilizing the solution, but at the cost of accuracy [74,130]. 

In other words, the upwinding process is equivalent to that of adding the 

artificial diffusion term to the coefficient of the second order derivative and 

applying the standard Galerkin method using linear, equal sized elements 

[129]. 

There is an alternative algorithm [117,128,131] based upon numerical 

quadrature techniques. The evaluation of the weighted residual integrals 

usually uses some quadrature rules. In this case, an inexact quadrature 

point displaced from the normal quadrature point, with the standard 

Galerkin formulation is used in evaluating the motional induction term. The 

location of the point on a local coordinate (-1 < % < 1) plays the same role as a 

in the previous approach. This formulation is simpler to implement and 

computationally more efficient. This upwinding technique seems to be the 

most popular approach for the motional induction problems as evidenced by 

the number of papers [46,51,52,54,71-75,79,80,82,83,132]. 

(1.8) 
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Techniques in the boundary element method (BEM) 

The techniques used in BEM are basically the same as that of the self-

adjoint transformation. In order to establish the boundary integral equation, 

a fundamental solution (i.e. Green's function) is necessary. In the process of 

finding it, some [133,134] transform the governing equation into self-adjoint 

form, while others [135-137] make the adjoint equation of the governing 

equation self-adjoint. Both transformations are the same except the sign 

change due to the adjoint relation. In any case, the final solutions are based 

on the fundamental solutions of the self-adjointed equations. This 

guarantees unconditionally stable solutions in the space domain. Again, ill-

conditioning due to the exponential factor poses difficulties [137] and the 

same restriction on the size of the exponential argument applies as in the 

case of the self-adjointed variational FEM approach. 

2. Transient Analysis 

So far, steady state analysis in the uniform geometry has been discussed 

where the governing equations are based on a fixed coordinate system. In 

transient analysis, one can use the governing equation from the moving 

coordinate system where the VxB term does not appear in the equation. 

This looks promising since the motional induction term causes all the 

spurious oscillations. But, this approach involves extensive pre-processing 

and is laborious since the movement is taken into account by a moving mesh. 

That is, several meshes have to be created, one for each position, and then 

each solved in turn. Local remeshing is also possible to retain the same 
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mesh topology as long as is practical, and then re-mesh, joining nearest 

nodes on the moving interface. The idea is shown in Figure 1.9. The specific 

part in the obtained matrix which corresponds to the distorted mesh is 

recalculated at each time step [58]. This can produce distorted elements and 

loss of accuracy so that this technique should be used only for time periodic or 

transient movements and limited displacement [138]. 

In some rotating electrical machines working under unbalanced 

conditions or supplied by nonsinusoidal current, transient dynamic analysis 

is necessary. In order to avoid the above mentioned difficulties, Hoole [59] 

proposes a rotating adaptive mesh by applying the Delaunay criterion for 

optimality, Razek et al. [56,57] model the airgap using a Fourier technique 

and then couple to both rotor and stator, and Rodger et al. [60] and Maréchal 

et al. [139] couple two boundaries with different numbers and locations of 

nodes by using Lagrangian multipliers while ensuring the natural 

continuity conditions of the physical quantities. 

B 

a 

B B 

TV 33 
a b 

t + 5t t +  2 Ô t  

Figure. 1.9. Local remeshing of moving problems 



www.manaraa.com

30 

There are a few transient analyses with governing equations from the 

fixed coordinate system. The upwinding techniques, originally developed 

firom the steady state equation, are used with a time step algorithm [71,75,79]. 

A major criticism of this approach relates to excessive numerical dissipation 

[140]. Aldefeld [141] solves the two-dimensional diffusion equation with a 

nonperiodic source by the finite difference method. Forward time 

differencing is used for the motional induction term and backward time 

differencing for the other terms. This makes the matrix symmetric, but 

causes an additional error. The same methodology can be deduced from 

Muramatsu et al.'s work [70], where equations from the moving coordinate 

system and the fixed coordinate system are compared. They show that, in 

transient analysis, the velocity term can be obtained from the temporal 

derivative term of the moving coordinate system. According to this 

derivation, the velocity term has to be treated at the old time level, i.e. forward 

time differencing. Since the backward time difference method is used for all 

the other terms, these apparently different approaches are basically the same 

except that the former used FDM and the latter used FEM for spatial 

calculations. 

Similar time step algorithms can be found in the literature of fluid 

mechanics. Donea [142,143] uses a Taylor-Galerkin method based on forward 

time stepping and an artificial diffusion-like term appears in the finite 

element formulation. In this formulation, however, the artificial diffusion 

term is thought of as part of the difference approximation. Zienkiewicz et al. 

[140,144,145] employ the method of characteristics and derive a similar, but 

more versatile time step method and an artificial diffusion term, which has 



www.manaraa.com

31 

the same form as Donea's. The relationship between this time dependent 

artificial diffusion term and that found in the upwinding technique shows 

that the degree of upwinding, a, is equivalent to the grid Courant number. 

Leismann and Frind [146] introduce an arbitrary artificial diffusion term 

into the governing equation a priori, and use separate, unknown time 

weighting factors for the various terms. Errors are then investigated by 

choosing the midpoint between the old and new time levels as the origin of 

Taylor series. In the process of minimizing the errors, the expression for the 

artificial diffusion term is chosen and found to be the same as the former 

cases. Proper time weighting factors are also chosen in this process. 

Although their purpose is to achieve a symmetric matrix, this method can 

well be adapted to the study of probe velocity effects for electromagnetic NDE. 

This dissertation, thus, adopts Leismann and Frind's method and 

investigates the relationships with other methods. 

F. Scope of the Dissertation 

This dissertation is concerned with probe velocity effects for 

electromagnetic NDE. The variable reluctance probe exemplifying active 

magnetic flux leakage methods, the differential eddy current probe and the 

remote field eddy current probe exemplifying diffusion methods are 

considered for uniform axisymmetric geometries. For non-uniform 

geometries, transient analysis is required as explained earlier. However, 

output NDE signals in eddy current methods are such variables as 

impedance and phase that can only be defined under AC steady state 
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conditions. Therefore, only the variable reluctance probe is considered for 

non-uniform geometries. 

Chapter II presents a detailed description of the three probes to be 

modeled and their applications without considering velocity effects. 

Chapter III explains the use of the finite element method for spatial 

discretization and the finite difference method for temporal discretization, 

also without the motional induction term. 

Starting with the Galilean transformation, the governing equation for 

probe velocity effects is derived and its characteristics and similarity with the 

convective diffusion equation found in fluid dynamics are explained in 

Chapter IV. The magnetic Reynolds number and the treatment of the 

motional induction term are also discussed. 

In Chapter V, the upwinding finite element formulation is explained 

and probe velocity effects in the uniform NDE geometries are studied for the 

three probe cases. 

Chapter VI compares various time step algorithms and results obtained 

by applying two of the algorithms, namely Donea's method and Leismann 

and Frind's method, are compared. 

Chapter VII summarizes the work described in the dissertation and 

presents conclusions based on the numerical modeling experiences. Areas 

for future work are also included in this chapter, followed by a 

comprehensive list of references. 
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CHAPTER n 

ACTIVE LEAKAGE FIELD AND EDDY CURRENT PROBES 

One of the advantages of electromagnetic NDE methods, particularly 

those associated with magnetic flux leakage (MFL) and eddy current (EC) 

inspection, is that the probe does not need to contact the testing specimen. 

Thus, it allows for rapid moving inspection. For this reason, three kinds of 

noncontacting probes used in the inspection of axisymmetric geometries, are 

selected for the study of the probe velocity effect. These are the variable 

reluctance (VR) probe, the differential eddy current probe, and the remote 

field eddy current (RFEC) probe. The VR probe and the differential eddy 

current probe have been used for detecting the presence of magnetite and 

denting of steam generator tubes in pressurized water reactors [26,147,148] 

and the RFEC probe have been used for the measurement of wall thickness of 

oil well casing and pipelines [41-44]. However, these probes are also capable 

of detecting isolated pits and cracks [40,42,147]. Although a real MFL pig, 

which operates at high speeds to inspect steel pipelines, employs permanent 

magnets to induce a magnetic field from inside the tube, the basic principle of 

operation is the same as that of the VR probe. The VR probe is selected to 

study the probe velocity effect for MFL inspection because of this reason and 

the abundance of previous work experience on the probe [13,26,53,84,149-153]. 

The three probes are introduced in this chapter, but without considering 

probe velocity effects. 
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A. Variable Reluctance Probe for Active MFX. Inspection 

The nuclear power industry is concerned with the examination of steam 

generator tubing. Steam generators form an important link between the 

primary and secondary loops in a nuclear power plant. Heat generated by the 

nuclear reactor is absorbed by the primary coolant (water in the case of 

pressurized water reactors) and circulates through a number of Inconel 

tubes within the steam generator. The heat is transferred to a mixture of 

high pressure steam in the secondary loop which, in turn, drives the 

turbines. The heat exchanger tubes are supported by carbon steel support 

plates at regular intervals. A simplified schematic diagram of a nuclear 

power plant cooling system and a cross section of a steam generator are 

shown in Figures 2.1 and 2.2. Due to their intimate contact with the mixture 

of steam and water, the support plates tend to corrode over a period of time 

and the crevice gap between the support plate and the tube becomes packed 

with magnetite and other byproducts of corrosion. This eventually leads to 

denting and damage of tubes. Since damaged tubes result in contamination 

of the secondary coolant by the radioactive primary coolant, they represent a 

safety hazard and consequently damaged tubes are often plugged, leading to 

reduced operational efficiency and attendant loss of revenue. Early detection 

of magnetite buildup in the crevice gap region is, therefore, imperative if tube 

plugging is to be avoided and in order to take remedial measures such as 

chemical flushing of the steam generator [26,29]. 



www.manaraa.com

35 

SG 

SG CP 

STEAM TO 
TURBINE 

CP 

REACTOR 
VESSEL 

FEED WATER 
FROM CON­
DENSER 

CP 

STEAM 
GENERATOR (SG) 

COOLANT PUMP (CP) 

Figure 2.1. Simplified schematic diagram of a nuclear power plant 
cooling system (after Lord [147] ) 
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Figure 2.2. Cross section of a steam generator (after Lord [26] ) 
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Figure 2.3. A simple variable reluctance probe (after Satish [29] ) 

The VR probe was developed to detect and measure crevice gap 

clearance (distance between the tube and support plate), magnetite buildup 

and support plate defects. The basic premise is that all such anomalies 

would affect the reluctance of a simple bobbin type of VR probe carrying a dc 

excitation winding and a Hall plate mounted on the periphery of the bobbin 

(Figure 2.3). The reluctance of a magnetic circuit is given by 

I % = (2.1) 
MrMoA 

where I is the effective length of the flux paths and A the corresponding 

cross-sectional area. Because of the relative permeability term flux paths 

through air have a much higher reluctance than those through 
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ferromagnetic support plates, consequently length or area variations in an 

air gap can be monitored directly by measuring the strength of the magnetic 

field. Figure 2.4 shows the flux distributions for different positions of the 

probe with respect to the support plate. 

Figure 2.4. Flux distributions when the VR probe is 
a) away from a support plate, 
b) aligned with a support plate 
(after Lord [26] ) 
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When the probe is away from the support plate, it experiences maximum 

reluctance as all the flux paths are in air, thus the probe flux is at a 

minimum. With the probe positioned directly under the support plate, the 

probe experiences reduced reluctance due to the higher permeability of the 

support plate, thus the probe flux level increases. A typical Hall plate signal 

obtained by passing the probe past a clean support plate is shown in Figure 

2.5. The probe is initially calibrated by passing it through a calibration rig 

consisting of a number of accurately machined crevice gaps of known 

dimensions and obtaining a relationship between the probe output and 

crevice gap width. Repeated tests with different support plates have shown 

that the magnitude of the probe signal is related directly to the crevice gap 

clearance [26]. This relationship is used later to determine the dimensions of 

crevice gaps in a steam generator. 
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Figure 2.5. Typical variable reluctance probe signal obtained from the 
magnetite free crevice gap and the defect free support plate 
(after Lord [26] ) 
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The VR probe suffers from several disadvantages chief of which is the 

poor temperature sensitivity characteristic of Hall plates as well as their 

tendency to drift with time. This necessitates frequent calibration unless 

automatic calibration procedures are incorporated within the system. In 

addition, the probe is not sensitive to defects in the inconel steam generator 

tube because of the fact that the tube is nonmagnetic. 

The governing equation for this VR probe is an elliptic Poisson equation 

expressed by 

Vx-(VxI) = 7J (2.2) 
P _ 

where |i is the permeability, A is the magnetic vector potential, and Jg is 

the DC source current density. The output NDE signal sought is the normal 

component of magnetic flux density, usually obtained by a Hall plate. 

B. DifEerential Ed  ̂Current Probe 

A typical differential eddy current probe used in PWR steam generator 

tube inspection is shown in Figure 2.6 [147,154]. In this method, two identical 

TUBE 

-̂ DIFFERBITIAL 
EDDY CURRENT 

PROBE 

Figure 2.6. Typical differential eddy current (EC) probe used for 
inspecting tubes (after Satish [29] ) 



www.manaraa.com

41 

0 Imbalance Signal 

Figure 2.7. AC bridge used for measuring changes in 
differential EC probe impedance 

coils mounted on a common axis as the tube but spaced apart by a small 

distance, form the two arms of a bridge circuit (Figure 2.7) which is initially 

nulled with the probe located in a defect-free segment of the tube. When the 

coil arrangement is moved past a narrow axisymmetric O.D. defect for 

example, whose width is considerably less than the spacing between the coils, 

the leading coil faces the defect first, and the presence of the defect causes a 

variation in the coil impedance which in turn causes an imbalance in the 

bridge circuit. The bridge error signal, which is linked to the difference 

between the impedance of the two coils, is then used to obtain a trajectory 

OAO in the diagram shown in Figure 2.8. Similarly, when the trailing coil 

faces the defect, the change in impedance causes an imbalance in the bridge 

circuit. But, this time, the imbalance signal is in an opposite direction 

relative to that caused by the leading coil so that the trajectory OBO is 

obtained. During the intervening period when neither of the coils face the 
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Figure 2.8. Impedance plane trajectory obtained with differential 
EC probe for a narrow axisymmetric O.D. defect 

defect, the impedance trajectory remains stationary at the origin, 0. 

Differential eddy current probe flux distributions for different positions of the 

probe with respect to the support plate are shown in Figure 2.9. 

The differential nature of the probe makes the arrangement relatively 

insensitive to environmental effects. In addition, the differential connection 

results in the cancellation of the quiescent value of the coil impedance thereby 

highlighting the variations rather than the absolute value of the impedance. 

This makes measurement relatively easy. The differential probe, however, 

suffers from a disadvantage in that in the case of a long uniform defect 

running along the length of the tube, the changes in the differential 
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Figure 2.9. Flux distributions as the differential EC probe enters 
a support plate (1 KHz excitation frequency) 
(after Lord [147]) 
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impedance occur only at the ends of the defect. This may be misinterpreted 

as two small defects instead of one long defect [29]. Another common 

difficulty in eddy current testing is due to the skin effect phenomenon. The 

skin effect equation [155], derived from Maxwell's equation and by using the 

solenoidal property of steady currents ( V • 7 = 0 ), can be written as 

where a is the conductivity. This equation describes mathematically, the 

tendency for eddy currents to stay at the surface of conductors. As a simple 

example, in the case of an infinite AC current sheet over a conducting half-

space, the current density solution to equation (2.3) is given by 

where o) = 2jtf is the angular frequency, Jg is the current density at the 

surface of the half-space, and Ô is the depth of penetration or skin depth 

at which the current density drops to 36.8% of the value at the surface, Jo and 

the phase of the current density lags that of Jo by one radian. Although the 

exact value is not known for complex NDE geometries,  the skin depth for a 

half-space of aluminum is estimated as 2.59 x 10'^ meters for an excitation 

frequency of 1 KHz, using the above expression. The corresponding value for 

steel is 5 X 10-4 meters. Therefore, eddy current methods are limited to the 

detection of flaws close to the surface even though low excitation frequencies 

may help extend the penetration depth to a certain degree. 

at 
(2.3) 

J = Jo exp (-J ) sin(cui - ̂  ) (2.4) 

(2.5) 
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The governing equation in this case, where the displacement current 

term can be negligible due to low operating frequencies (up to few MHz), is a 

parabolic diffusion equation given by 

VX-(VXJ) = 7,-<T-^ (2.6) 
at 

where Jg is an AC source current density. In a linear, isotropic, AC steady 

state case, it reduces to an elliptic partial differential equation, 

J = -iiJs + j(o<y^A (2.7) 

by using phasor notation and the Coulomb gauge, which is automatically 

satisfied in axisymmetric cases. The output NDE signal sought is the 

differential impedance and the impedance plane trajectory that is formed as 

the differential EC probe passes the defect. 

C. Remote Field Edify Current (BFEC) Probe 

The first known reference to the RFEC probe is in a 1951 patent by W. R. 

MacLean [156]. This reference went unnoticed or unappreciated for many 

years. The first application came in the late 1950s when it was applied to the 

downhole inspection of oil well casing pipe by T. R. Schmidt at Shell 

Development Corporation. In the early 1960s, the technique was applied to 

pipeline inspection and an intelligent pig, which was equipped with power, 

measurement, and recording devices, was built to be run through a pipeline. 

The pig was pumped through the pipeline and special launching and 

retrieving traps were used between pumping stations to insert and recover 
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the device, which might travel 80 Km or more. Even though the technique 

has been used for about 30 years, there was little information on the physics 

underlying this phenomenon and the experimental observations were 

explained by a hypothesis, as mentioned in Chapter I. This hypothesis was 

confirmed by the finite element analysis of W. Lord and his NDE group at 

Colorado State University [41,43,157]. 

The RFEC method shows more promise than conventional eddy current 

methods for oil and gas pipeline inspection due to the increased sensitivity to 

inner and outer pipe wall inhomogeneities. Conventional eddy current 

methods are limited to surface inspection because of the skin effect 

phenomenon. Even though the fundamental physical principles governing 

both methods are one and the same (that of electromagnetic induction), the 

differences in operating frequencies in the two methods result in field 

patterns that have different characteristic properties. 

Figure 2.10 shows the RFEC probe where an excitation coil and a sensor 

coil are positioned several (about 3 to 4) pipe diameters apart. Figure 2.11 

\ 
Exciter Coil Sensor Coil 

Figure 2.10. Remote field eddy current (RFEC) probe 

Pipe Wall Thickness 

30 
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Figure 2.11. Typical RFEC magnitude and phase characteristics 
wiâiout defects (after Nath [159] ) 

shows that the magnitude of sensor coil voltage changes rapidly with 

distance from the exciter coil until approximately two pipe diameters, after 

which the change is much slower. Sensor coil phase angle (relative to that of 

the exciter coil) also changes abruptly in the same region. Figures 2.12 and 

2.13 show the existence of a magnetic potential valley (where RMS magnetic 

vector potential values are zero) and a phase knot (where the phase of 

magnetic vector potential is undefined) in this transition region. In Figure 

2.12, the RMS magnetic vector potential magnitude is plotted on a logarithmic 

scale in order to show details of the remote field. These effects occur where 

outwardly directed energy from the exciter coil meets inwardly directed 

energy from the outer tube region. In the exciter coil region, the skin effect is 
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Figure 2.12. Existence of potential valley in the transition region 
(after Lord [155] ) 

beicacloa Coll 

Figure 2.13. Existence of phase knot in the transition region 
(after Lord [155] ) 
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from tube I.D. to O.D., whereas in the remote field region the skin effect is 

from O.D. to I.D. In this way, the RFEC probe is sensitive to both external and 

internal tube flaws, a characteristic not normally associated with 

conventional eddy current NDE [157-159]. Figure 2.14 show flux plots for O.D. 

and I.D. pipe slots in the remote field regions, from which it can be seen that 

a sensor coil passing through such fields would give rise to similar signals. 

a. b. 

Figure 2.14. Flux contours for a) outer diameter slot, b) inner diameter slot 
at 160 Hz (after Lord et al. [157] ) 
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Figure 2.15. Steady state AC phase difference between the exciter coil 
and the sensor coil (after Lord [84] ) 

Since the sensor coil voltage is very low (microvolt range) but the phase 

is sensitive to both l.D. and O.D. defects, the steady state AC phase differences 

between both coil voltages are also monitored. Figure 2.15 shows this phase 

difference plot. The double bump phenomenon associated with defect 

detection has a spacing equal to that of the exciter to sensor coil distance. 

The governing equation is the same as that for a conventional eddy 

current probe. In the RFEC case, the typical operating frequency lies between 

20 to 200 Hz [41]. The output NDE signals sought are the magnitude and 

phase of the sensor coil emf or the phase difference between the two coils. 

The disadvantage of this method is that signal analysis is more complex 

because of double signals from a single defect and hence, I.D./O.D. defect 

discrimination is very difficult [160]. To differentiate l.D. and O.D. defect 

signals, a new signal processing technique is proposed by Udpa et al. [161]. 
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CHAPTER m 

NUMERICAL METHODS 

This chapter explains the numerical methods used in this dissertation, 

but for introductory purposes, the motional induction term is not included in 

the governing equation. The finite element method (FEM) and the finite 

difference method (FDM) are used for spatial and time discretizations, 

respectively. 

The governing equation to be considered in the explanation of FEM is an 

elliptic partial differential equation, which governs steady state problems. 

For the magnetic flux leakage method of NDE, the governing equation in 

steady state magnetostatic situations is a Poisson equation, 

Vx^(VxÂ) = 7j (3.1) 

For the eddy current method of NDE, the governing equation for AC steady 

state situations becomes the elliptic diffusion equation, 

Vx^(Vx J) = 7y-;û)0-Â (3.2) 

Since both are elliptic partial differential equations, the treatment in the finite 

element formulation is the same except that the variables in equation (3.1) are 

real numbers, while the variables in equation (3.2) are complex numbers 

since they are phasor vector quantities. The explanation in this chapter is, 

for simplicity, concentrated on equation (3.1). 

When the physical process is governed by a parabolic partial differential 

equation, which represents the transient situation, the finite difference 
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method is used for time discretization. The causes of the transient situation 

are due to either nonsinusoidal sources or turn-on/off transients. 

Furthermore, if the probe movement is considered, unbalanced and/or non­

uniform geometrical conditions also cause the transient situation as 

mentioned in Chapter I. For both the magnetic flux leakage method and the 

eddy current method, the governing equation in the transient situation is the 

parabolic diffusion equation, 

In this case, all the variables are real numbers. The explanation of FDM for 

time discretization is, therefore, based on equation (3.3). For spatial 

discretization, FEM is still used. 

In this dissertation, only axisymmetric geometries are considered. 

These axisymmetric models deal with coils moving within tubes where A 

and Jg have only 0 components that are invariant in that direction. 

Consequently, all analysis can be done in a two dimensional r-z plane. In 

linear, isotropic, axisymmetric problems, the curl-curl expression in the 

above equations can be written as 

V X-Î-(V X A) = 
U ^ dt 

(3.3) 

Vx-^(VxA) =  -
J" 

(3.4) 

A. Finite Element Method for Spatial Discretization 

The essential ideas of FEM began to appear in publications principally 

during the 1940s [162-166]. However, the modem finite element concept 
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which is used today was estabhshed by Turner et al. [167] in 1956, and the 

term 'finite element' first appeared in Clough's paper in 1960 [168]. Finite 

element analysis has its origin in the fields of structural analysis. In 1965, 

Zienkiewicz and Cheung [169] broadened the scope of FEM tremendously by 

demonstrating that it is applicable to all field problems that could be placed in 

variational form [170]. From the mid-1960s, the FEM spread beyond the 

original confines of structural analysis to many other fields such as heat 

transfer, acoustics, fluid mechanics and electromagnetics. The earlier 

applications of the method in electrical problems were made by Winslow [171] 

in 1967, and by Silvester [172] as well as Ahmed and Daly [173] in 1969. The 

method has since been used in a variety of applications. Silvester and Chari 

[174] solved electromagnetic field problems in electrical machines. Anderson 

[175] used the method for obtaining transformer leakage profiles. Chari [176] 

was the first to use the method for determining the solution to the eddy 

current problem. Brauer [177] used the method to study alternating magnetic 

fields and induced currents in transformers. The pioneering work in the 

area of electromagnetic NDE was made by Lord [178-180]. 

1. Finite Element Discretization and Interpolation 

The first step in FEM is to discretize the solution region into finite 

elements. The element can have a variety of shapes. It may be triangular or 

quadrilateral for 2-D problems, tetrahedral or polyhedral for 3-D problems. 

In axisymmetric problems, the element is developed by revolving a triangle or 

a quadrilateral through 360 degrees. Each element has a certain number of 
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nodes. If only the vertices of the element are used as nodes (straight side), it 

is a linear element. If there are mid nodes between two vertices, it is a higher 

order element which can handle curved boundaries better. The final 

solutions are found at these discrete node points. The discretization of the 

solution region is therefore very important since the number of nodes as well 

as their locations have an impact on the solution. In general, small, dense 

elements must be used in regions where high gradients of the solution are 

expected. Also, other considerations are required such that the boundaries of 

an element must coincide with material interfaces and that the material 

properties, current density and flux density are assumed to be constant 

within the element. 

Once the element shape is chosen, the next step is to approximate a 

continuous function for the solution by a discrete model that is composed of a 

set of piecewise continuous functions defined over the element. The most 

popular form of the element function is the polynomial. The order of the 

polynomial is related to the number of nodes per element. The polynomial 

can be alternatively expressed as a linear combination of interpolation (or 

shape) functions and the unknown nodal values. This polynomial expression 

is called a Lagrange interpolation polynomial [170]. Generally, a polynomial 

or a fimction is said to be interpolatory if it is defined to be equal to particular 

values at a number of specific and separate nodes. The shape functions 

themselves are also interpolatory because each one is defined to be equal to 

unity at one node and zero at other nodes. This interpolation property 

characterizes almost all finite element shape functions used for second order 

differential equations. 
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There is another way of finding these shape functions. For some 

elements like the triangle or tetrahedron, area coordinates or volume 

coordinates can be used to find them. If these elements are linear, they are 

simplex elements. The advantages of simplex elements are the existence of 

closed form expressions for integration and the satisfaction of the continuity 

condition between elements. For the other types, such as higher order 

elements or quadrilateral elements, the integration should be carried out by 

numerical methods and a mapping technique is required to maintain 

continuity between adjacent elements. 

In this dissertation, linear rectangular axisymmetric elements are 

used. The shape of the element is shown in Figure 3.1. However, it is not well 

suited for approximating curved boundaries. In order to generalize the code, 

a general quadrilateral element whose sides are not necessarily parallel to 

the global coordinate system is assumed. 

z 

A 

Figure 3.1. Rectangular axisymmetric finite element 
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Since there are four nodes in the quadrilateral element, it is possible to 

use an approximating function having four parameters such as 

A(r,z) = ai + a2 r + as z + 34 rz (3.5) 

However, there is a serious problem of continuity of the function between 

elements. Along any of the sides of such an element, both r and z would be 

changing values. The equation for any side could be expressed as 

z = bi + bg r (3.6) 

Now, if equation (3.6) is substituted into equation (3.5), we have 

A(r,z) = ai + a2 r + as (bi + b2 r) + r(bi + b2 r) (3.7) 

Without carrying out the algebra, it is at once evident that the function A(r,z) 

varies quadratically with r along the boundary being considered. Because 

there are only two nodes along any boundary, they can not be used to 

completely determine this quadratic function. That is, the function also 

depends on at least one more nodal point value not part of the boundary. This 

means that there is no way to guarantee continuity of the function across 

element boundaries. To overcome such a difficulty, a mapping technique is 

used and this type of element is called the isoparametric element [114]. 

2. Isoparametric Elements 

Let us first consider the rectangular element whose sides are parallel to 

the local u and v axes as shown in Figure 3.2. The parent element in the u-v 

plane is to be mapped onto the r-z plane. The parent element for 

quadrilaterals is chosen to be a bi-unit square for convenience in applying the 
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V 

i 
1 

-1 1 

-1 

-• u 

Figure 3.2. A parent element and a real element 

Gaussian quadrature formulas, which integrate from -1 to 1. This parent 

element can be regarded as either the bilinear element of the Lagrange 

family or the linear element of the serendipity family [170]. The difference 

between these two families is in the existence of nodes inside the element. 

Since the shape functions of 2-D Lagrange elements are formed merely by the 

product of 1-D Lagrange interpolation functions, there have to be some nodes 

inside the 2-D element whenever a 1-D element is not linear. In this case of a 

linear quadrilateral parent element, however, there is no difference between 

the two families. Now, if the 1-D element as shown in Figure 3.8 is 

NL NR 

1 1 

-1 -1 0 
u 

Figure 3.3. Shapes functions in 1-D parent element 
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considered, the shape functions for the left and right nodes can be written as 

Nl(u) = ^ (3.8) 

Nr(u)=^ (3.9) 

since these shape functions must satisfy the interpolation property, Nl = 1, 

Nr = 0 at u = -1 and Nl = 0, Nr = 1 at u = 1. Then, the approximating function 

in that element can be written as 

A(u) = [NL(U) NR(U)]{a^} (3.10) 

where Al and Ar are the unknown nodal values on the left and on the right, 

respectively. This shows the form of the Lagrange interpolation polynomial 

mentioned in the previous subsection. From the above 1-D shape functions, 2-

D shape functions can easily be found. Following the node numbering in 

Figure 3.2, 

Ni(u,v) = I (1-u) (1-v) (3.11) 

N2(u,v) = I (1+u) (1-v) (3.12) 

N3(u,v) = ̂ ( 1+u) ( 1+v) (3.13) 

N4(u,v) = ̂  ( 1-u) ( 1+v) (3.14) 

These functions vary linearly along any side of the element simply because 

either u or v is constant. Therefore, two adjacent rectangular elements 

sharing the same two nodal values of the dependent variable would create a 

continuous approximation of that dependent variable everywhere along the 
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common boundary. Hence, a mesh made up of these elements could be used 

to produce the necessary approximation which would be continuous 

throughout the mesh. However, a mesh of rectangular elements is very 

limited in its use. Therefore, it is mapped into the r-z plane with a 

continuous mapping function so that it will be continuous in the r-z plane. 

Since the shape function itself is continuous, it is used as the mapping 

function. Hence, the same set of parameters is used for both approximation 

and mapping - thus the term, isoparametric elements. For example, an 

approximating function A in the r-z plane can be written as follows. 

A(r,z) = A( r(u,v), z(u,v) ) = A(u,v) = [ N (u,v) ] ' 

Ai 
Ag 
A3 

.A4. 

(3.15) 

where [N] = [ Ni N2 Ng N4 ] and Ai is the unknown value at node i. Thus, 

A at point (u,v) is equal to A at point (r,z) and the position (r,z) are determined 

from. 

r(u,v) = [ N (u,v) ] ' 

ri 
T2 
rs 
.r4J 

' , z(u,v) = [ N (u,v) ] ̂  

zi 
Z2 
Z3 (3.16) 

where ri and zi are the coordinates of the node i at r-z plane. 

The mapping concept is very useful not only for the inter-elemental 

continuity but also for the numerical integration. Since there is no closed 

form expression for the integration in the case of quadrilateral element, 

numerical integration techniques such as the Gaussian quadrature formula 

have to be used. In most quadrature formulations, the interval of integration 

is from -1 to 1 or from 0 to 1. The quadrature points are therefore given within 

those ranges. Since the parent element used in the isoparametric mapping is 
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defined within the same ranges, it is very convenient to use the given 

quadrature points directly. The Gaussian quadrature formula is to be 

explained later in this chapter. 

3. Various Methods for Finite Element Fonnulation 

Most commonly used methods for deriving finite element formulations 

are the weighted residual method, and the variational method which is based 

on the minimization of the energy functional. These two methods can be 

shown to be equivalent if the governing equation is self-adjoint. To show this 

in the simpler manner, the two dimensional version of equation (3.1) is 

considered, where A and Jg have only z components, and a more general 

formulation known as the weak formulation [114] is introduced. 

Self-adioint equation 

Self-adj ointness means that two equations are equal to their adjoints 

[181]. For a second order differential operator, a, 

a [y(x)] = a2(x) y" + ai(x) y' + ao(x) y 

dy d^y 
where y' = ^ and y" = , its adjoint is defined by 

(3.17) 

a [y(x)] = [a2(x) y]" - [ai(x) y]' + ao(x) y 

= a2 y" + (2a2' - ai) y' + (a2" - ai' +ao) y 

Thus, equation (3.17) is self-adjoint if and only if 

a2'(x) = ^ a2(x) = ai(x) 

(3.18) 

(3.19) 
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This self-adjointness condition shows that any second order differential 

operator of the form 

_d 
dx a2(x)^ + ao(x) y (3.20) 

is necessarily self-adjoint. In the finite element formulation, the self-adjoint 

equation always produces a symmetric matrix and this symmetry is a 

precondition for the existence of a variational principle [115]. Since equations 

(3.1), (3.2), and (3.3) do not have the first order spatial derivative term, they are 

self-adjoint provided that the permeability is a constant. 

Galerkin weighted residual method 

A residual is a function which results when an approximation of the 

solution is substituted into the governing equation. The two dimensional 

linear isotropic version of equation (3.1) is 

d^A d^A 
dx^ ^ dy^ 

= -7, (3.21) 

where A and Js are, in fact, 2-components of the vectors A and Js (i.e. A = 

Az , and Jg = Jsf ) and v is the reluctivity, i.e. a reciprocal of the 

permeability. If A(x,y;Ai) is an approximation function for the solution, 

where Ai are the unknown parameters such as coefficients of the 

approximating polynomial or unknown nodal values of the interpolatory 

form expression, then the residual becomes 

Rix,y,Ai)=v d^A(x,y;Ai) ^ d A(x,y;Ai) 
dx' dy' 

+ Jr (3.22) 
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The residual depends not only on x and y but also on the yet undetermined 

parameters, Ai. If the approximation is accurate, the residual is identically 

zero. Conversely, if a particular approximation makes the residual deviate 

only slightly from zero, then the approximation is probably very close to the 

exact solution. Therefore, a technique for minimizing the residual error is 

employed because it tends to minimize the solution error, simultaneously. 

The technique is to make the weighted average of the residual zero. That is, a 

certain weighting function is multiplied to the residual, integrated over the 

solution region (element by element) and then, set to zero. Depending on the 

choice of the weighting function, various weighted residual methods result 

such as collocation, subdomain, least-square and Galerkin's methods [170]. 

The Galerkin weighted residual method uses each of the shape functions as 

the weighting function and this can be shown, for a quadrilateral element, as 

follows, 

\\j^Ni{x,y)R{x,y\Ai,A2,Ai,AA)dxdy = 0 

\\j^N2{x,y)R{,x,y,Ai,A2,A'i,A^)dxdy = 0 

^^^N-i{x,y)R{x,y,Ai,A2,A2,,A^)(ixdy = 0 

\^^N^{x,y)R{x,y,Ai,A2,A2,,A4.)dxdy = 0 (3.23) 

where D is the domain of the problem. These are four independent equations 

for the four parameters: Ai, A2, A3, and A4. 
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Variational method 

The variational approach uses an energy functional which is an integral 

equation comprised of the terms describing the energy within the system to be 

solved. This energy functional attains a minimum value corresponding to 

the true solution. That is, if the energy functional is calculated using the 

exact solution of the governing differential equation, its value will be lower 

than that calculated using any other approximation. Thus, if we had a 

family of approximating functions in which the exact solution was hidden, it 

could be found by simply determining which one of the approximating 

functions gave the lowest value for the energy functional. Furthermore, if the 

correct answer were not contained in the family, it could be assumed that the 

function which gave the lowest energy functional would be the best 

approximation to the exact solution. Considering this assumption and the 

interpolatory expression of the polynomial, the best nodal approximation can 

be found by taking the derivative of the energy functional with respect to the 

unknown at each node and setting it to zero, or equivalently by taking the 

variation of the energy Amctional due to the variation of the unknown at each 

node and setting it to zero. Instead of performing this process over the entire 

region, it is done element by element for convenience and then summing the 

contribution of each individual element. The equivalence between the energy 

functional and the governing equation is shown later by using the variational 

calculus. 

A general energy functional over the domain D of electromagnetic field 

problems, can be written as 

F = Id (stored energy - input energy + dissipated energy) dv (3.24) 
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where the stored energy is due to the magnetic field, the input energy is 

derived from impressed current densities and the dissipated energy arises 

from the eddy current densities in the conducting peirts of the geometry [30]. 

Therefore, the energy functional for the two dimensional version of equation 

(3.1), i.e. for the two dimensional linear isotropic magnetostatic flux leeikage 

problem, can be written as 

and that for the two dimensional version of equation (3.2), i.e. for the two 

dimensional linear isotropic AC steady state, eddy current problem, can be 

written as 

The same form of energy functional can be written within an element and the 

elemental equations are obtained by taking the derivative or the variation of 

the element energy functional and setting it to zero. These elemental 

equations are summed up to form a global equation and then solved for the 

final solution, A. 

In many problems, only the differential equations and their boundary 

conditions are available and the energy functional does not always exist for 

every differential equation. Since Galerkin's method does not require an 

energy functional, it is sometimes more convenient. For example, the 

(3.25) 

(3.26) 
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governing equation for moving magnetic fields includes a motional induction 

term which appears as the first order spatial derivative. The coefficient of 

this term does not allow us to write the governing equation in the form of 

equation (3.20). Therefore, this term makes the governing equation nonself-

adjoint. In this case, the energy functional is not known so that the 

variational approach can not be applied unless the governing equation is 

transformed to the self-adjoint form. Galerkin's method is, therefore, very 

useful in this respect. 

Equivalence of Galerkin's method and the variational method 

via the weak formulation 

There is an intermediate formulation, known as the weak formulation 

[114], between Galerkin's method and the variational method. By using this 

method, the equivalence of the two methods will be shown. 

Let's consider equation (3.21). The function A(x,y) is assumed to satisfy 

the equation for all values of x and y. Therefore, we know that 

must also be satisfied for all values of x and y, and that this must be true 

regardless of the function B(x,y). Finally, we can state that 

must be satisfied for all functions B(x,y) if A(x,y) is the true solution. 

Integrating the above integral by parts, we have 

(3.27) 

(3.28) 
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-JIo dxdy+jl^ 
dA dB dA dB ££*^^>> = 0 (3.29) 

The first term in equation (3.29) can be reduced to an integral over the 

boundary of the area. This is accompHshed with the aid of the 2-D divergence 

theorem or equivalently, Green's theorem for line integrals [170], 

(3.30) 

Using equation (3.30), the first integral in equation (3.29) can be written as 

-k 
dA A4 

v-—Bnr + v—n—Bn-^ 
dx dy ^ 

ds (3.31) 

This term allows us to specify boundary conditions. If the arbitrary function, 

B(x,y), is limited to only those functions which are zero at the boundary, this 

term disappears. Thus, we have 

Ho 
dA dB . dAdB , „ dxdy = 0 (3.32) 

The function A(x,y) must satisfy the above integral equation for all fimctions 

B(x,y) which are zero at the boundary. In this process, the existence of the 

second order derivative at all points has reduced to the first order derivative. 

Hence, the above integral formulation places a weaker demand on the 

fimction for which we are looking. Thus, the name, weak formulation. 

Now, consider equation (3.28). If an approximating function for A(x,y) is 

substituted in that equation, the terms in the bracket become the residual, 
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and B(x,y) corresponds to the weighting function. When the shape functions 

are used for B(x,y), we have the Galerkin weighted residual method. That is, 

the weak formulation is basically equivalent to Galerkin's method. 

The next task is to show the equivalence of the weak formulation and the 

variational method. In doing so, some knowledge of the variational calculus 

[182] is needed, so that three basic operations are given without proof 

Now, consider the energy functional given in equation (3.25). Since the 

variation of the energy functional with respect to A has to bé zero, the 

variation is taken first. 

(3.33) 

(3.34) 

SF = ^ 5y (3.35) 

(3.36) 

Using the above basic operations, equation (3.36) can be reduced to 

SFiA) = JJ (&i) 4- - JsSA dxdy = 0 
ay ay 

(3.37) 

Now, compare equations (3.37) with (3.32). Clearly, equation (3.32) can be 

obtained by substituting B for 5A in equation (3.37). If A is known at the 

boundary, 5A is zero there, which satisfies the requirement of B. This means 
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that the variational method is equivalent to the weak formulation. At last, 

according to the syllogism, we can say that the variational method is 

equivalent to Galerkin's method. Furthermore, in an elemental integration, 

5A can be expressed using the interpolatory form as 

which includes the shape functions. Therefore, the equivalence of the two 

methods may be noted directly. 

The last task in this subsection is to show the equivalence of the energy 

functional and the governing equation. Starting from equation (3.37) and 

integrating by parts, 

The first term can be written as an integration over the boundary of the area 

by applying Green's theorem as we did in the weak formulation and it 

disappears. Then, we are left with 

(3.38) 

(3.39) 

This allows us to write the variation as 

(3.40) 

+ {SA)dxdy (3.41) 
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If A satisfies the governing differential equation, the term in the bracket is 

identically zero, and the above integral is zero for any variation SA. Likewise, 

if equation (3.41) is zero, i.e. the variation of the energy functional with respect 

to any variation 5A is zero, we must say that the term in the bracket is zero. 

This means that the governing equation (3.21) is satisfied. Therefore, we can 

conclude that minimizing the energy functional is equivalent to the 

governing equation. 

4. Finite Element Formulation iising Weak Formulation 

Now consider our original axisymmetric problem. Since the extension to 

the eddy current problem is very easy, only the magnetic flux leakage method 

is considered here. In linear isotropic problems, the governing equation (3.1) 

becomes 

Since the problem is axisymmetric, the magnetic vector potential and the 

source current density vector have only 0 components and thus, A and Jg are 

scalar quantities. By applying the weak formulation, we have 

(3.42) 

(3.43) 

Integration by parts gives 
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"1. vi|-(M)^+v|i^-«J, 
r or or oz oz 

: jrfv = 0 (3.44) 

As we have seen earlier, the first term is supposed to transform to the lower 

integral. However, in the cylindrical coordinate system, the first term is not 

complete for applying Green's theorem, so that we manipulate as follows, 

-f v--^(rA)-^^+v-j5A-^(rA)l+V 
•'vL r or or r [ r or J 

dA dôA 
dz dz 

dv = 0 (3.45) 

Then, using Green's theorem, the first term can be transformed to a surface 

integral. 

[r dr dz J dn 
(3.46) 

If the Dirichlet boundary condition is used, the value at the boundary is 

already known, so that the variation, 5A is zero. If the Neumann boundary 

condition is given, then is zero, and we are left with only the second term 

in equation (3.45). The integration of this second term is performed element 

by element, and later elemental contributions will be summed up. Since the 

elemental integration has the same form, we can write it in matrix form. 

I dA A 
K d r ^  r  «Î 

dA A 

dz . 

dv-j SAJ^dv = 0 (3.47) 
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Now, we want to substitute A for its approximation defined in an element as 

A = [N]{A},=[iVi N2 iV4] 

4 
A2 (3.48) 

and also, we will use the following notations. 

{VA} = 

{dA A d 1 
dr^ r 
2 

•[N]{A}. 

. dz . . dz . 

dNi ^ Ni dN2 AVg dN^ ^ A/4 
dr r dr r dr r dr r 

dNi dN2 dN2 dN4 
dz 

A2 
A3 

A 

= [VN]{A}. (3.49) 

dz dz dz dz 

After substituting the above notations, equation (3.47) becomes 

I «{A}/[v[VNf[VN]{A},-yj(N]'']«(v = 0 (3.50) 

Since this equation must be satisfied for any variation ôA, we can write the 

elemental matrix equation as follows. 

where 

[S]e{A}e = {Q}e 

! 

[S]e = v[VN]^[VN]rfv 

{Q}e= J Jsiî^fdv 

(3.51) 

(3.52) 

(3.53) 
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Note here that even though the integration is for volume, 

dv = r dr dz d0 (3.54) 

the integrands are independent of 0. Therefore, the portion of the volume 

integral, d0, is cancelled on both sides of equation (3.51) and this effectively 

results in an area integration. The value of r is found by using the centroidal 

value of an element. The evaluation of equations (3.52) and (3.53) requires 

integration of the shape functions and equation (3.52) further requires 

differentiation of the shape functions with respect to the original coordinates, 

r and z. 

First, consider the differentiation. Since the shape functions are written 

in terms of local u and v coordinates due to the mapping used in the 

isoparametric element, direct differentiation with respect to r and z is not 

possible. Therefore, the chain rule of differentiation is used to obtain 

dNj _ dNj du ^ dNi dv 
dr du dr dv dr 

dNi dN; du dN; dv 
dz du dz dv dz 

or in matrix notation, 

(3.55) 

[du dv] 
dr dr dr du 

dNi du dv dNi 
. dz . [dz dz. . dv . 

(3.56) 

Now, we use the following notations, 

du du 

\r,zj 
dr. dz 
dv dv 
dr dz. 

(3.57) 



www.manaraa.com

73 

'dr dr' 
du dv 
dz dz 

.du dv. 

r,z 
M ,v ,  

Note that equation (3.56) becomes 

(3.58) 

dNi 
dr 

dNi 
[ d z  

(, W u,v j 
<r,zl 

du 
dNj 

. dv . 

(3.59) 

where we have used the notation 

jrjfMi 
r , Z j  

J — 
L yr,zj] 

(3.60) 

We note also that the differentials transform as 

Idr] 
\dz\ 

and 

\du] 
\dv\ 

r,z 

J| — 
r,z 

'du] 
dvl 

\dr] 
\dz\ 

(3.61) 

Hence, 

V r \ Vf \ -
if "'V J r,z 1 
J J — 

U.V, 

-1 

(3.62) 

This allows us to rewrite equation (3.59) as 

-1 

M,V 

(3.63) 

Now, consider the integrand of equation (3.52). It is convenient to divide the 

integrand into several terms. 
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[VN]^[VN] 

dN\ ^ dN\ 
dr r dz 

dN2 ^ N2 dN2 
dr r dz 

dN-j ^ ̂ 3 ^^3 
dr r dz 

dN^ ^ N4 dN^ 
, dr r dz . 

M dN2 N2 dN4^. 
dr r dr r dr r dr 

dNx dN2 dN-i dN4 
dz dz dz dz 

TdNi dN^' 'a 0 
dr dz r 

0 

dN2 dN2 a 0 
dr dz r 

0 

dN^ dNj a 0 
dr dz r 

0 

dN4 dN4 a 0 
[L dr dz \ . r 

0 

TdNi dN2 dNi dN4 
dr dr dr dr 

dNi dN2 dN^ dN4 
L d z  dz dz dz 

Ni N2 7V3 N4' 
r 
0 

r 
0 

r 
0 

r 
0 

'dN^ dN{ 
dr 

dN2 
dz 

dN2 'dNi dN2 dN^ dN4' 
dr 

dN^ 
dz 

dN^ 
dr 

dNi 
dr 

dN2 
dr 

dN^ 
dr 

dN4 + 

dr 
dN4 

* . dz dz dz dz . 

L dr dz \ 

dNi dN\ 
dr dz 

dN2 dN2 
dr dz 

dN^ dN'i 
dr dz 

dN^ dN4 
. dr dz 

Ni N2 N2, N4 
r 
0 

r 
0 

r 
0 

r 
0 

Ni 

r 
N4 

0 

a 0 
r 

Nl 0 

0 

'dNi dN2 dN^ dN4' 
dr dr dr dr 

dNi dN2 dN^ dN4 
. dz dz dz dz . 

a 0 

A 0 

A 0 

A 0 
L r 

Ni N2 A^3 
r 
0 

r 
0 

r 
0 

r 
0 

(3.64) 
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If we define 

'dN^ dN2 dNi dN^ 
dr dr dr dr 

'J- dNi dN2 dN^ 
.dz dz dz dz . 

'du dv' dNi dN2 dNj dN4' 
dr dr du du du du 
du dv dNi dN2 dN^ dN4 

.dz dz. .dv dv dv dv . 

/ xn 
r,z 1 

<u,v)_ 

-1 

[N'(m,V)] (3.65) 

and use simplified notations such as and —^ , where i  = 1 ,2 ,  3,4, and j 
dr r 

N{ 

1, 2, 3,4, then equation (3.64) can be written as 

[N'(«,v)]^ 
r,z 
u,v. 

-1 

(3.66) 
dr r r dr r r 

dNi dN- dN- urn 
Since —- is expressed in terms of —^ and in equation (3.63), the above 

dr du dv 

equation is expressed completely in terms of u and v. Therefore, this form of 

integrand can be directly used for the integration with respect to u and v. 

For the integration, it is necessary to determine the relationship between 

the differential area in the u-v plane and the corresponding differential area 

in the r-z plane. Consider the differentials du and dv, as two vectors in the 

u-v plane which are mapped into the r-z plane. The differential area is then 

written as du x dv . To evaluate this cross-product, we must determine the 

r and z components of each vector. The differential du represents the 

displacement from the point (u,v) to the point (u+du,v) and the corresponding 

displacement in the r-z plane would be from the point (r,z) to the point 
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(r+dr,z+dz). That is, a differential change du in the u-v plane causes a 

differential change in the r-z plane equal to 

dr = du and dz du (3.67) 

Hence, these are the r and z components of the transformed vector du. 

Therefore, we can write 

— 9r . ^ dz J „ d u  = ^ d u r  +  ^ d u z  

and likewise, 

-J— dr . ^ dz . ^ 
dv + g^dvz 

(3.68) 

(3.69) 

The differential area can now be written as 

1— -r- fdr dz dz 9r du X dv = du dv 

Br dr 
du dv 

dz dz 
du dv 

dudv = J|M 
u,v. 

dudv (3.70) 

where J is the Jacobian matrix as shown earlier in equation (3.58), and | jj is 

its determinant. The mapping is acceptable only when this determinant of 

the Jacobian is larger than zero [170]. The value of this determinant tells us 

the amount of local expansion or contraction of the coordinates due to the 

mapping. 

The integral in equation (3.52) can now be evaluated as 
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1 1 
[Sle = J J V|[N'(M,V)]' 

— 1—1 W. V ,  U' V ,  

-1 

[N'(«,v)] 

+ J } ,[^N, Nj , N, ̂ Nj ^ N, Nj 

-1-1 
dr r r dr r r 

\i\r^dudv 

\i\r„dudv (3.71) 

where rc is the centroidal value of an element which can be written as 

Tc — 
ri + r2 + ra + r4 (3.72) 

Similarly, the integral in equation (3.53) can be evaluated as 

1 1 
{Qle = J iJgi^'fWrdudv (3.73) 

-1-1 

Actual integration is performed numerically by using the Gaussian 

quadrature formula. If we let I(u) represent the integrand, any of the 1-D 

integrals from -1 to 1 may be evaluated as follows. 

]nu)du=iw„il{u„i) 
-1 1=1 

(3.74) 

where Wnl are weight factors and Unl are points at which the integrand is 

evaluated. The Uni are called quadrature points. The values for the weight 

factors and the quadrature points depend on the quadrature formulas. The 

simplest formulas are the equally spaced, closed Newton-Cotes rules, such as 

the trapezoidal rule and Simpson's rule. If n is even, these rules integrate 

exactly a polynomial of degree n-1; if n is odd, they integrate exactly a 

polynomial of degree n. The Gauss quadrature rules are more precise than 

the Newton-Cotes rules. For n points in equation (3.74), the Gauss rules 
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Table 3.1. Gauss quadrature points and weights in 1-D problems 

Number of Gauss 

points,]! 

Gauss points, 

Uni 

Weights, 

W„i 

1 uii = 0 Wii=2 

2 

U22=-^ 

W2l= 1 

W22= 1 

3 U31=-^ 

1132 = 0 

U33=-^ 

W3i=| 

W32=| 

W33= 1 

integrate exactly a polynomial of degree 2n-l. However, there is no simple 

answers for what order quadrature rule should be used. Enokizono et al. 

[112] even used one thousand quadrature points for a 2-D problem. A few 

sample values for the weights and the quadrature points are shown in Table 

3.1. It might be noted that for each integration order, the sum of the weights 

equals 2, the length of the interval of integration. 

Since the area integrals are over the bi-unit square, they may be treated 

as two separate 1-D integrals, each over an interval from -1 to +1, and hence 

the 1-D Gaussian quadrature formulas can be used for each integration. 

Thus, letting I(u,v) represent the integrand, any of the area integrals can be 

evaluated as follows, 

11 1 ^ M . .1 n n 
j ]l{u,v)dudv= \\ iv = I (3.75) 

-1-1 -lU=l V ^=I/=1 
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The sampling points now form a 2-D array, as shown in Table 3.2, and the 

weights are the products of the 1-D weights. Since these rules are the 

extension of 1-D cases, they integrate exactly all the terms associated with the 

Lagrange family of elements which involve the products of 1-D polynomials, 

but they are not optimally efficient for the serendipity elements except, of 

course, the linear element. 

With the aid of isoparametric mapping and Gaussian quadrature rules, 

differentiation and integration are carried out for each element, contributions 

from each element are summed up, and finally, a global matrix equation is 

obtained. 

In general, the coefficient matrix, which is often called the stiffness 

matrix due to the terminology used in structural analysis, has all the 

information about the geometry and material properties. As we can predict 

in the fonn of equation (3.52), the stiffness matrix is symmetric for the 

Poisson equation. However, if we consider the probe velocity effect, the matrix 

is not symmetric due to the presence of the motional induction term. The 

right hand side vector contains information about the source. The stiffness 

matrix has some nice features such as handedness, sparsity and diagonal 

dominance. The bandwidth is dependent upon the mesh and can be seen as 

the largest difference in node numbers of a single element, plus one. 

Therefore, effective numbering of nodes can drastically reduce the bandwidth 

thus reducing computer resources and solution time. The banded nature of 

the matrix can be utilized in the direct solution methods and the sparsity can 

be utilized in the iterative solution methods. Of course, if it exists, the 

symmetric property of the matrix is very helpful in both methods. Extensive 
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Table 3.2. Gauss quadrature points and weights in 2-D problems 

Number of 

Gauss points, 

nxn 

Gauss points, 

(Unl-Vnl) 

Weights, 

W n k x W n l  

( 0 , 0 )  

'W'  w '  
J. 1_ 
V 3 '  V 3  
1 1 

V3'  V3 

) 

) 

V3 

0 ) 

i '  

-t' 
0 ) 

- I '  
^ , 0 ) 

I' 

'V5 

"V5 

'V5 

0 

0 

0 

V5 
V3 
V5 
V3 
V5 

1 

1 

1 

1 

81 
40 

81 
25 

81 
40 
81 
64 

81 
40 

81 
25 

81 
40 

81 
25 
81 



www.manaraa.com

81 

survey of various solution techniques can be found in reference 30. In this 

dissertation, the Gaussian elimination technique is used. The technique 

decomposes the matrix into three matrices. A simple forward and backward 

substitution allows solution for the vector potential at each node point. 

To impose a boundary condition, such as the Dirichlet boundary 

condition on the center axis and the distant boundaries in our axisymmetric 

problems, a blasting technique [114] is used. That is, the diagonal elements of 

the stiffness matrix which correspond to the specified boundary points are 

blasted or multiplied by a very large factor. The factor is many orders of 

magnitude larger than the values of the elements being dealt with in the 

matrix. - The corresponding right hand side is replaced by the known value 

multiplied by the new large diagonal term. Thus, the other elements in the 

same row become effectively zero and the specified boundary value is enforced 

for that node. This technique can easily be integrated into the finite element 

program. The concept of this technique is very similar to the penalty function 

of tlie modified variational principle [118]. When minimizing the functional, 

subject to the unknowns obeying an additional differential relationship, a 

new functional is formed by including the integration of this constraint 

squared and multiplied by the penalty number. By using a large penalty 

number, this constraint can be achieved. 

5. Poslprocessiiig 

The final step in the finite element method is postprocessing. When the 

FEM is used for modeling magnetic NDE methods, solutions are obtained in 
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the form of magnetic vector potentials. The purpose of postprocessing is to 

use the computer to interpret the results. Flux density (or Hall plate signal), 

coil impedance, eddy current densities, emf, phase, etc. can be calculated 

from the resulting magnetic vector potential values. Also, equipotential plots 

can be drawn. Indeed, plotting is a good way to judge the correctness of the 

solution and provides better understanding of energy/defect interactions. In 

this subsection, the output signals of the NDE methods selected in this 

dissertation are explained. 

Hall plate signal of the variable reluctance probe 

The Hall plate signal is in fact a normal component of the flux density. 

From Figure 2.3, the normal component can be identified as the r-component. 

The expression of flux density in terms of magnetic vector potential can be 

obtained from the definition of the magnetic vector potential, 

B =  V x A  

-f è -z 
r r 

Tr ° I 
0 M 0 

dz 
'- + ̂ Z = Brr + BzZ 
\ r  d r )  

(3.76) 

where the axisymmetric nature of the problem makes ^ , the r-component 

and z-component of A zero. To find Br for the Hall plate signal, the 

differentiation of A, i.e. the 0-component of A , with respect to z is necessary. 

However, since isoparametric mapping is used, the spatial derivative ^ was 

already calculated during the finite element formulation process. Equation 



www.manaraa.com

83 

(3.63) defines the derivatives of the shape functions with respect to r and z. 

These are the transformed derivatives from the local u-v coordinate system to 

the r-z coordinate system. Since the shape functions at their corresponding 

nodes have a value of 1, and 0 elsewhere, the derivatives in equation (3.63) can 

be considered as spatial derivatives and used to evaluate the flux density 

components. For each element, the derivative with respect to z is calculated 

during the numerical integration over the element and stored in a special 

array. The ^ is then calculated simply by multiplying the derivative at 

each node to the value of A at each node. This calculation gives the Br value 

at each node, but the Hall plate was assumed to take an element. Therefore, 

an average of the four nodal values of the element is used as the Hall plate 

signal. 

Differential impedance of the differential eddv current probe 

Although the finite element formulation of the eddy current method is 

not explained specifically in this chapter, it is almost the same as that of the 

magnetic flux leakage method. Therefore, we can assume that the complex 

valued magnetic vector potential solutions for the eddy current problem are 

already obtained. 

There are, in general, two ways of finding the impedance of the coil. One 

is to use Faraday's law by interpreting the emf induced in the coil as the 

integration of the emf-producing field E all the way around the coil. In this 

case, the magnetic vector potential solutions of the finite element analysis are 

directly used for the calculation of coil impedance. For this reason, the phase 

information with respect to the source can be directly obtained. Palanisamy 
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[28] and Satish [29] use this method based on centroidal values of r and A. To 

avoid an error associated with these centroidal values, Udpa [31] performed 

an integration over the source coil region incorporated into the finite element 

model by obtaining a closed form expression for the integrand. 

One other method uses the energy of the system. This method is more 

accurate than the direct use of the potential solution and it is proved by Hoole 

[104] as follows. Consider equation (3.25). This equation can be rewritten as 

F = JJ {|(VA)^ - J^A^dR (3.77) 

Now, take a small variation of A, i.e. A -» A + kti, where k is a small constant 

less than 1, and ti is a fimction of the coordinate variables. Then, we have 

F+SF = + kr])f -Js{A + kr])^ (3.78) 

Subtracting equation (3.77) from equation (3.78), 

SF = jJ[vit(VA • Vii)+k^{Yrtf - Iskri^R (3.79) 

Now, if we integrate the identity, 

7 • ( rj VA) = t}V^A + VA-Vr] (3.80) 

over the region of solution R and apply the divergence theorem to the left 

hand side, 

jT]VAdS=\j[TjV^A + VAVr}yR (3.81) 

Putting this into equation (3.79), we get 

SF = / vkTi^S-jjkT][vV^A + Js)dR + jjk\VT]fdR (3.82) 
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As mentioned earlier, the first integral vanishes because of the boundary 

conditions and the second term vanishes when the governing equation is 

satisfied. The last term is positive and of order k^, which shows that the 

Amctional is at a minimum and also that when the changes in A are of order 

k, changes in the functional are even smaller and of order k2. Therefore, 

energy is of one higher order of accuracy than potential. 

For the impedance calculation, we can associate inductance with the 

stored energy and resistance with the dissipated energy [30]. The stored 

energy can be written as 

where 

N is the total number of elements, 

Aj is the elemental area on the r-z plane, 

Vi = Zm-gg A; is the element volume, 

subscript ci means the centroidal value of element i. 

Again, the derivatives are calculated at each node as explained earlier and 

averaged centroidal values of elements are used in the above equation. 

Another familiar expression for the stored energy is 

(3.83) 

W  =  | L I s2  (3.84) 
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where L is the inductance of the coil and Ig the current in the coil. Therefore, 

the inductance, L, can be obtained from equation (3.83) and (3.84). 

The calculation of the resistive part of the system is based on the eddy 

current distribution. The dissipated energy can be written as 

i=l 

N 
= '^aP'(Ji\Acif'27urciAi (3.85) 

1=1 

where 

Je = Jeâ is the eddy current density, 

(Je)ci = -jûXTiAci is the centroidal eddy current density of element i, 

Ee is the emf-producing field associated with Je , 

(0 is the angular frequency. 

The coil resistance now becomes 

R = (3.86) 
ig 

and finally, the coil impedance can be written as 

Z = R + jcoL = A ( P + jû)2W ) (3.87) 

Although this energy approach is more accurate, there are some 

drawbacks. Because energy calculations involves squared terms and 

absolute values of the magnetic vector potential, the original information 

regarding phase with respect to the source is lost. Also, it is impossible to 
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calculate the impedance of each coil in a differential probe. That is because 

the energy is found from the total energy and therefore yields the total 

impedance regardless of the number of coils, their shapes or their locations 

in the solution region. To avoid the latter difficulty, the impedance of an 

absolute coil is calculated for all the positions of each coil in the differential 

probe and then, the differential impedance is found by taking the difference 

between the two absolute impedances that correspond to the positions of the 

two coils in the differential probe. 

Induced pmf of the remote field eddv current probe 

Unlike the differential eddy current probe, the remote field eddy current 

probe has a separate sensor coil and the output NDE signal sought is the 

magnitude and phase of the emf induced in that coil. The induced emf, V, is 

given by Faraday's law. 

where Nt is the number of turns in the sensor coil and <]) is the total magnetic 

flux across the sensor coil. The total magnetic flux is given by 

The last step is due to Stoke s theorem. Then, for a circular coil of radius r, 

V  =  - N t f  (3.88) 

(3.89) 

(3.90) 

since A = A0 . Therefore, the induced emf under the AC steady state 

condition is 
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V = - jû)Nt27crA (3.91) 

where m is the angular frequency of the current source. Again, the 

centroidal values of r and A of the elements that correspond to the sensor coil 

area are used in the above calculation. For example, suppose the centroidal 

values of r and A of a coil element i are rd and A^i, respectively, and the 

number of turns associated with each coil element is the same, then the total 

emf is 

where M is the total number of elements in the sensor coil area. Note that the 

emf and Aci are, in fact, complex phasor values. Therefore, we can write 

V = a + jb. In the time domain, this can be written as 

V = - Nt ^ j27CC0rciAci 
i=l 

(3.92) 

V = 3in{ (ot + TAN-1( ^ )} (3.93) 

Hence the peak value of the induced emf is V a^+b^ , and the phase angle is 

TAN-l(^). 

B. Finite Difference Method for Temiporal Discretization 

There are situations where the excitation is nonsinusoidal such as a 

pulsed excitation, or the steady state can not be defined due to non-uniform 

geometries in the case of the moving magnetic fields as mentioned in 
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Chapter I. In these cases, the unknown magnetic vector potential. A, is a 

function of time so that the time dependent transient analysis is necessary. 

The A in the case of sinusoidal excitation is in fact a function of time, but 

under the sinusoidal steady state conditions the phasor variable, which is not 

time dependent, can be used . If the unknown variable is a function only of 

time, the ordinary differential equation results and this kind of problem is 

called the initial-value problem. Compared to the requirement of boundary 

conditions on all sides of the solution domain in the boundary-value problem, 

the initial-value problem requires only an initial condition at a certain time 

and marches forward indefinitely into the future. Equation (3.3), however, 

involves several spatial derivative terms as well as a temporal derivative 

term. Therefore, the A is a function of both time and space, and the equation 

is a partial differential equation. Specifically, it is a parabolic partial 

differential equation since the time derivative is first order. This kind of 

problem is called the mixed initial-value/boundary-value problem [170]. In 

this case, not only the initial condition but also boundary conditions are 

required. 

All the numerical methods are capable of dealing with transient 

problems. In the boundary element method, however, the transient analysis 

is not a common practice [105]. Although the finite element method can 

handle the time discretization in a similar way to the spatial discretization 

[170,183], the most popular method is the finite difference method. In this 

dissertation, therefore, the finite difference method is used for time 

discretization. 
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1. Derivation of Elemental Matrix Equation 

Since A is a function of three variables, r, z, and t, the approximation of 

A might be written as 

that is, the shape functions are now also a function of time. However, this 

approach has some difficulties. Because of the time axis, 3-D elements are 

required and the 'boundary' condition at t = «» is missing. One way to resolve 

this lack of boundary condition is to first calculate the steady state solution. 

Anyway, the dimensional increase in elements and the requirement of pre­

calculation for the boundary condition makes this approach unattractive. 

Instead of putting all the independent variables in the shape functions, 

{A} can be made time dependent so that the shape functions remain the same 

as in the former boundary-value problem. That is. 

This is the classical separation of variables technique, sometimes also 

referred to as the method of Kantorovich. At this point, compare equations 
ô!Â 

(3.3) and (3.1). The only difference is the time derivative term, -c— , in 
at 

equation (3.3). This term is treated as a function independent of A in this 

formulation. Since the shape functions have not changed from the earlier 

development for equation (3.1), the elemental matrix [S]e and {Q}e of equations 

(3.52) and (3.53) can still be used without any alteration. These matrices [S]e 

and {Qle correspond to the second order spatial derivative term and the 

A(r,z,t) = [N(r,z,f)]{A} (3.94) 

A(r,z,0 = [N(r,2)]{A(0} (3.95) 
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source term, respectively. Using the same weak formulation, the time 

derivative term becomes 

\SA\^(r^dv (3.96) 

From equation (3.95), the approximation of the derivative term in an element 

can be written as 

= i(r,2,0 = [N(r, z)]{À(f)}g (3.97) 
ot 

Substituting equation (3.97) into the elemental integration of equation (3.96) 

gives 

-J^_5{A}/(<j[N]''[N]{À}^)A. (3.98) 

Combining equation (3.98) with equation (3.50) gives 

5{A}/[v[VNf [VN]{A}, + o(Nf [N]{Â}^ - /j[N]'']iv = 0 (3.99) 

Since this equation must be satisfied for any variation SA, the elemental 

matrix equation can be written as 

[S],{A},+[C],{À}^={Q}, (3.100) 

where [C]e = (T[N]^[N]i/v , and [S]e and {Q}e are the same as shown in 

equations (3.52) and (3.53). Summation of all the elemental contributions 

gives the global matrix equation, 

[S] {A} +[C] {À} ={Q} (3.101) 



www.manaraa.com

92 

2. Finite Difference Method for Tinie Stepping 

In all time stepping methods, the time axis is divided into a succession of 

time steps beginning at time tg. The time step size may be uniform or non­

uniform. Therefore, we look for an approximate solution consisting of 

discrete values at the end of each time step. The discrete values are computed 

from a recurrence relation, which is an algebraic equation that relates the 

values at two or more successive times. A one step method relates the 

discrete values at both ends of a single time step. For example, the one step 

method in the n th time step has the form, 

[D] {A}n + [E] {A}n-1 = 01 {G}n + 83 {G}n-1 (3.102) 

where the coefficient matrices [D] and [E] are known constants, which can be 

expressed by our [S] and [C] matrices. The coefficients 0i and 0% are also 

known constants and their values are related to the type of difference method 

such as the forward, backward, and central difference. The (GM and {G}"-1 

are the source vector, {G(t)}, evaluated at times tn and tn-i, respectively, and 

hence are also known. At the first time step, where n=l, {A}1 is obtained by 

using the initial condition, (A}o. At the second time step, {A}2 can be obtained 

by using the result, {A}1, from the former step and so forth. Phrases such as 

'time-stepping' and time-marching' are therefore used to describe this 

process. A multistep method relates the discrete values corresponding to k 

successive time steps. Since this method requires k initial values, it is not so 

popular. Therefore, the one step method is employed in this dissertation. 
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Since only one step is considered, we consider the (n+l)th uniform time 

step, which carries the solution from time tn to time tn+i- There are many 

types of finite difference method. In the backward difference method (also 

known as the backward Euler rule), each of the terms in equation (3.101) is 

evaluated at time tn+i- On the other hand, in the forward difference method 

(known as Euler's rule), each term is evaluated at time tn- In both methods, 

however, the expression of the time derivative term is the same even if the 

time derivative term is evaluated at different times. That is, in the backward 

method. 

To understand the difference between these two methods, consider the 

Taylor series. For convenience, the braces and the bold type are omitted. The 

unknown variable. A, is expressed by the old and new time levels in terms of 

its value at the point of origin of the Taylor series. If we choose the new time 

level, tn+i, as the origin, we can write 

(3.103) 

and in the forward method. 

(3.104) 

(3.105) 

where = A(tn). Ignoring the second and higher order error terms, we get 

equation (3.103). Consequently, the backward method is first order accurate. 
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If we choose the old time level, tn, as the origin, 

= A(tn + At) =  A "  +  A f +  dA" AP- d^A" 
dt 2 dt^ 

(3.106) 

Ignoring the second and higher order error terms, we get equation (3.104) 

and the forward method also becomes first order accurate. 

To achieve a better accuracy, the midpoint, tn+|, can be chosen. That is, 

and 

A"=A 

(3.107) 

By subtracting equation (3.108) firom equation (3.107), we get 

K) 
(3.108) 

^^n+V2 

dt 
(3.109) 

Ignoring the error term gives 

^^n+V2 

dt At 
(3.110) 

Again, we have the same expression for the time derivative. This is the 

central difference method (also known as the Crank-Nicolson method), which 

has second order accuracy as can be seen in equation (3.109). 
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There is a more general method which uses the dimensionless time 

weighting factor, 0. Figure 3.4 shows the variation of 0. The value of 0 is 

e=^—^ 
At 

(3.111) 

and with this 0, the interpolation polynomial can be written as follows. 

{A}® = {Af + e[{A}"+^ - {A}«] = (1 - 9){A}" + 9{A}"+^ (3.112) 

This means that the 0 plays the role of local coordinate, ranging from 0 

to 1, similar to the local coordinate, u, ranging from -1 to 1 as shown in Figure 

3.3. If 0 = 0, {A} is evaluated at time tn, i.e. the forward difference method; for 

0 = 1, {A} is evaluated at time tn+i, i.e. the backward difference method; and 

for 0 = ^, {A} is evaluated at time tn+|, i.e. the central difference method. As 

we have seen earUer in equations (3.103), (3.104), and (3.110), the expression 

for the time derivative is always the same. Therefore, it can be written as 

e lAf-'-fA}" 
At 

(3.113) 

0=0 
6 

0=1 

tn tn+1 

Figure 3.4. Time weighting factor over the (n+l)th time step 
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Using equations (3.112) and (3.113), equation (3.101) can then be written as 

In the above formulation, we have not associated a time superscript to either 

the [C] or the [S] matrices. If these matrices are explicit functions of time, 

then they should be evaluated at time t + dAt. 

Now, examine the coefficient matrix on the left hand side of equation 

(3.114) closely. In the backward (6=1) or central (0=1/2) difference methods, 

the matrix [S] does not disappear and the coefficient matrix is a nondiagonal 

matrix which requires matrix 'inversion'. Because of this, these methods are 

said to be implicit, meaning that the unknown, {A}"+1, is defined implicitly by 

equation (3. 114). In other words, {A}"+1 at any nodal point will be given 

implicitly in an equation involving other nodal point values of A at tn+i. In 

this problem, fortunately, the matrices [S] and [C] are both symmetric so that 

this property can be used in the matrix solution algorithm. 

In the forward difference method (0=0), however, the coefficient matrix 

consists of only the matrix [C], which is called the mass matrix in structural 

engineering problems. If the finite difference method were used for spatial 

discretization, this matrix would be a diagonal matrix so that matrix 

inversion would not be necessary. The solution could be obtained explicitly 

and very rapidly by merely dividing the corresponding right hand side term 

(3.114) 

where, like equation (3.112), 

{Qr  ̂= (l-0){Q}'' + 0{Qf-'̂  (3.115) 
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by the left hand side coefficient on the diagonal of the coefficient matrix. In 

the finite element method, unfortunately, the matrix [C] is not a diagonal 

matrix, thus making the equation implicit. Because of this, techniques for 

diagonalizing [C] are developed and are called mass lumping [118,130,170]. 

The procedure of mass lumping is to add all the terms in each row of [C], 

place the sum on the diagonal, and then replace the off-diagonal terms to 

zero. This lumping technique can be used only in the forward difference 

method and is very helpful in saving solution time considering the limitation 

of time step size imposed on the forward difference method. The smaller the 

time step, the more the recurrence calculations are required. The limitation 

of time step size is due to the stability consideration. Stability analysis is 

discussed in the next subsection. 

3. StabililyAiiaj^s^ of Temporal Dîcretization 

Stability is concerned with the behavior of the solution as time goes to 

infinity and calls for the boundedness of all perturbations in a computed 

solution. It is a characteristic of the method, not of the particular problem the 

method is applied to. For example, the backward difference method is 

unconditionally stable, while the forward difference method is stable only 

under a certain condition. Stable or unstable behavior can be investigated by 

examining the free response of a system [170]. If unstable behavior exists in 

the free response, the oscillations in the homogeneous solution will grow very 

large as time increases, so that the total response will also be unstable even if 

the particular response were stable. 
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There are two methods frequently used to test for stability, the matrix (or 

eigenvalue) method [86,170,184] and the von Neumann method [86,184]. 

Consider equation (3.114). If there is an alternative solution {a}^ based on the 

same discretization but with a different initial condition, then the difference 

{E}n = {A}n - {a}n (3.116) 

satisfies 

-i-lr 

"i[C] + e[S]]" [i[C]-(l-9)[S]]{E}«=[B]{E}»=([B]r'{E}° (3.117) 

where {E}o = {A}® - {a}o . A stable method is one in which the effect of the 

perturbation {E}o does not grow. For errors to die out or be damped as n 

increases, it is necessary that the norm of matrix [B] must be less than 1. In 

other words, the absolute value of the eigenvalue of [B] must be less than 1. 

Since equation (3.117) involves the number of unknowns equal to the total 

number of nodes in the solution region, there are many eigenvalues. 

Therefore, the TnaviTmim eigenvalue (also called spectral radius) has to be 

used to satisfy the stability condition. This is the matrix method. To find the 

maximum eigenvalue of the finite element model, not the exact problem, we 

need to solve the eigenvalue problem for the system numerically unless the 

approximation for that eigenvalue is used. This requirement of additional 

computation simply to determine the maximum eigenvalue makes the 

matrix method not so attractive. Hindmarsh et al. [185] compare the two 

methods and prefer the von Neumann method even though it ignores 

boundary conditions. 
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The von Neumann method is based on the finite discrete Fourier series 

expansion for the error. The method applies, in a theoretical sense, only to 

pure initial value problems so that it neglects the influence of boundary 

conditions. However, this is not a serious problem because instability is 

usually generated far from the boundaries [185]. Further, it applies only to 

linear, constant coefficient, finite difference approximations. If the 

linearization condition is not met, some form of local linearization is 

necessary. This linear property allows us to treat each Fourier component 

separately and use superposition to add all other components. The method 

also requires a difference form of equation. Therefore, we need to write the 

finite element equation in the form of a difference equation. 

To do this, consider the 1-D version of equation (3.3) in a purely 

mathematical sense. Since only the free response of the system is to be 

examined, the source term is ignored. Then, the governing equation can be 

written as 

The weak formulation yields 

(3.119) 

After integrating by parts and substituting the elemental approximation of A, 

/,{«A}/[N]MN]{À}/i+= 0 (3.120) 
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Here, the approximation of A in a 1-D linear element can be written as 

A = [N]{A},=[I-^ 1 (3.121) 

where h is the length of an element. Note here that the shape functions are 

not written for isoparametric elements. Equation (3.120) can be written in a 

matrix form as follows. 

[Ct{À} +[S],{A},=0 

where 

[c].=L[Nfo[Nti(=<Tr 
1 - -

h 
£ 

L h J 

r i_£  £  
I h h. 

dl = a 

^ h 
3 6 
h h 

L6 3j 

(3.122) 

(3.123) 

_ r  

h 
I 

'  1  

. h 
h h 

I 
. h . . h h . 

(3.124) 

This is the elemental matrix equation. To assemble the global matrix, 

consider the whole solution domain shown in Figure 3.5. Suppose that the 

B. C. B. C. 

i i 
node number i 

element number I 

2 3 4 5 

II m IV 

Figure 3.5. Solution domain of 1-D problem 
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matrix equation is expressed as follows, 

[C]{À}+[S){A} = 0 (3.125) 

then, the global matrices [C] and [S] become 

[C] = a 

[S] = V 

h 
6 

h h 
3 3 

h 
6 

G 

G 

1 

G 

h 
6 

h h 
3"^3 

h 
6 

0 

h h 
.1 1+1 

h h h 
1 

G 

G 

G 

G 

G 

G 

h 
6 

M 
A 

G 

h 
1+1 
h h 

1 

G 

G 

G 

6 
2h 
3 
h 

= 01 0 — 
6 

G G 

G G 

G 

G 

-- G 
h 

1+1 -1 
h h h 
_1 i 

h h 

= V G 

G 

G 

G 

h 
6 

3 
h 
6 

G 

G G 

0 G 

h 
6 
2A 
3 
h 
6 3. 

— — 0 G G 

— — — 0 0 

G 

0 

1 2 

~h h 
0 — — 2 

h 

(3.126) 

(3.127) 

where, for the sake of explanation, material properties, a and v, are 

respectively assumed to be the same in the whole domain. In the global 

matrices, each column and row correspond to the global node number and 

contributions from elements are placed according to the global node numbers 

of the elements. For example, the contribution from the element I is placed at 

C(l,l), C(l,2), C(2,l) and C(2.2) since the global node numbers of that element 

are 1 and 2. Because the global node number 2 is also present in element II, 

this contribution from the element II is superimposed at C(2,2). 
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Now, by using the general 0-difFerence method, equation (3.125) can be 

written as 

[̂C]+9IS]]{Ar ' = [i[C] - (1 - e)[S]]{A}" (3.128) 

or using the definition of errors in equation (3.116), 

•i[C]+«[S]]{Er • = [i[C] - (1 - 8)[S]]{E}« (3.129) 

From equations (3.126) and (3.127), we can evaluate the coefficient matrices. 

To write a difference form of equation, we select a node which is not at the 

boundary, e.g. node number 3. Then, we can write the difference equation for 

node k by using the elements of the k th row of the coefficient matrices. 

where the superscript and subscript denote the time level and the node 

number, respectively. Note that the terms inside the bracket associated with 

V (i.e. corresponding to the second order spatial derivative term) show the 

central difference scheme. This shows that the standard Galerkin method or 

weak formulation always reproduces the central difference formulas when 

there is no time derivative term (i.e. for steady state equations) as mentioned 

in Chapter I, where the upwinding technique is explained. 

We now have the difference form of equation. The von Neumann method 

assumes that the nodal errors can be represented by a finite discrete Fourier 

-Eltl\ 

= ^[^-1 + + f*+i] - - ft+l] (3.130) 
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series at each time level and such that each component is multiplied by a 

scalar amplification factor as the scheme proceeds to the next time level. 

However, because of linearity, it is possible to consider a single component. 

Thus, in one space dimension, we can write [86,185,186], 

En = ^n^jakh (3.131) 

where | is the amplification factor, a is the spatial firequency of the error or 

wave number, and j = If the method is stable, the absolute value of the 

amplification factor should be less than 1. 

Now, substituting equation (3.131) into equation (3.130) and dividing it by 

y 

1 = 
#-'(?)*•] — 4(1 — 0)—sin^ 

< 2 J 
sMf)"] *"Hf) 

1 — (3.132) 
i+ex 

where 

. 2f(Xh^ 
12vAf ^ I 2 j (3.133) 

The stability condition requires -1<|<1 for all a. Since X and 0 are 

always positive, the upper condition is automatically satisfied. The lower 

condition can be rewritten as (1 -2d)X<2 . If 0> — , this stability condition is 
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satisfied so that the method is unconditionally stable. Therefore, the central 

difference method and the backward difference method are unconditionally 

stable. Further study [170] shows that when the time step is very large, the 

central difference solutions may oscillate for many time steps, but with slow 

decay in the oscillations. The backward difference solutions, however, 

approach steady state with no oscillations at all. 

If 0 < — , the worst case is when sin(^) = 1 and this leads to the following 
2 ^ 

condition, 

Therefore, the forward difference method is conditionally stable and the time 

step size should not exceed the limit given by equation (3.134). 
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CHAPTER IV 

GOVERNING EQUATION FOR PROBE VELOCITY EFFECTS 

A. Existence of Quasi-Staticl̂ ystem in the Presence of a Moviî  Probe 

Most electromagnetic NDE processes which operate at frequencies 

where the displacement current term is negligible can be described by the 

quasi-static form of Maxwell's equations [5]. This form of the equations is 

used to explain the laws of circuit theory and electromagnetic diffusion 

phenomena. However, it is not clear whether the quasi-static approximation 

is valid in the presence of a moving probe. Therefore, its validity in the 

presence of a moving probe is studied in this section. 

The usual definitions of quasi-statics are somewhat loose. One approach 

to the quasi-static approximation is through the in-vacuo wavelength X of the 

considered field which oscillates at firequency f [187], If the characteristic 

dimension I of the system under investigation is much smaller than the 

wavelength, the exchange mechanism between electric and magnetic energy 

may be disregarded and it is a case of quasi-statics. That is, 

A, = Y » I (4.1) 

where c = , ^ is the speed of light. If this expression is rewritten using 

the period, T = j, 
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(4.2) 

Now, consider the special theory of relativity [188,189]. The time between 

events that happen at the same place in a reference frame is called proper 

time. The time interval measured in any other reference frame is always 

longer by a factor y than the proper time. This is called time dilation. In a 

moving probe frame, the period T corresponds to the proper time. Then, the 

period T' measured in a stationary test object frame can be written as 

which is longer than the proper time T. Since the speed of light is 

independent of the relative motion of sources and observers according to 

Einstein's postulates, the inequality in equation (4.2) is satisfied in the 

stationary test object frame. 

Time dilation is closely related to another phenomenon, length 

contraction. The length of an object measured in the reference frame in 

which the object is at rest is called its proper length. In a reference frame in 

which the object is moving, the measured length is shorter by a factor y 

(along the direction of relative motion) than its proper length. The proper 

length I in the stationary test object frame is then measured as T in the 

moving probe frame, 

(4.3) 

(4.4) 
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which is shorter than the proper length I. Again, by Einstein's postulates, the 

inequality in equation (4.2) is satisfied in the moving probe fi-ame. 

Since equation (4.2) is satisfied in both moving and stationary firames, we 

can conclude that the quasi-static approximation is valid in the presence of a 

moving probe. Even though the validity of the quasi-static approximation is 

shown by using the special theory of relativity, it is also valid in Galilean 

systems because the velocities dealt with in these systems are much slower 

than those in the special theory of relativity. 

B. Transformation of Quasi-Static Magnetic Fields 

As a prerequisite to forming a governing equation for probe velocity 

effects, there must be some relationships between field variables measured in 

a frame of reference moving with a constant velocity and the field variables 

measured in the stationary frame. For easy understanding of probe velocity 

effects, the desired governing equation needs to be formulated in the 

stationary reference frame. The treatment of relative motion in this 

dissertation is based on two postulates; (a) the equations of motion, including 

Maxwell's equations, are always written for a coordinate system that is 

moving with a constant magnitude and fixed direction; and (b) the laws of 

physics (e.g. Newton's laws and Maxwell's equations) are the same in every 

coordinate system (called invariance [188] or covariance [187,189,190]). These 

postulates are normally associated with the special theory of relativity but 

they are also valid for Galilean systems [191]. The general form of Maxwell's 

equations cannot be transformed consistently by means of the Galilean 
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transformation. The term consistent means that the equations are invariant. 

To be transformed consistently, a relativistic treatment is necessary such as 

the Lorentz transformation [187-189] or the Cerenkov transformation [187]. 

However, the quasi-static form of Maxwell's equations can be transformed 

consistently by the Galilean transformation. Furthermore, when the probe 

velocity is much slower than the speed of light, both Lorentz and Cerenkov 

transformations degenerate to the Galilean transformation, thus the 

relativistic terms make no significant contribution to the relatively low speed, 

quasi-static NDE problems. Therefore, in this dissertation, the quasi-static 

magnetic field equations are used from the outset and the Galilean 

transformation is applied. If primed variables are used for the coordinate 

system moving with a constant velocity, the differential equations in quasi-

static magnetic field systems can be written, by using the concept of 

covariance, as 

VxH' = J'  (4.5) 

V'-5' = 0 (4.6) 

V ' D '  =  0  (4.7) 

(4.8) 

(4.9) 

In this quasi-static magnetic field system, equation (4,7) expressing absence 

of free electric charges is of little practical value. However, this equation 
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plays the key role in the consistent transformation of the quasi-static form of 

Maxwell's equations by the Galilean transformation. 

Now, consider the Galilean transformation. The field variables in 

electromagnetic theory are, in general, functions of space and time. Let 

unprimed variables represent the variables in the stationary reference frame. 

The transformations for field variables are obtained from the differential 

equations. Consequently, before the transformations are derived, the 

relationship between the two differential operators, V and V, is necessary. To 

determine the relationship, consider two inertial coordinate systems r and F 

which are moving with a constant relative velocity V, The time t and t' 

measured by observers in the two coordinate systems are assumed to be the 

same according to Newtonian mechanics, which states that the time 

variables in any two systems moving with respect to each other have the 

same measure [190]. Thus, 

t = t' (4.10) 

If the origins of the two coordinate systems are selected to coincide at t = 0, the 

relation between r and f can be seen in Figure 4.1 and written as follows. 

r = r-Vt (4.11) 

Equations (4.10) and (4.11) define a Galilean transformation between the two 

coordinate systems. If this vector equation is rewritten at each coordinate, 

x' = x-Vxt, y' = y-Vyt, z' = z-Vzt (4.12) 

Consider a scalar function f '(x,y,z,t) which can also be written as f '(x',y',z',t') 

by making substitutions from equations (4.10) and (4.12). The gradient of this 

function in the primed coordinate system is 
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X' 

t 

Figure 4.1. Two inertial coordinate systems in relative motion 

(4.13) 

By using the -chain rule, we can write 

dx dx' dx dy' dx dz' dx dt' dx 
(4.14) 

From equations (4.10) and (4.12) it follows that 

dy' dx' dz' dt' „ 

AL=i ;  ÈL^ÈL^ÊL^o 
dz dz dz dz 

(4.15) 

Substituting equation (4.15) into equation (4.14), and by the same procedure for 

other terms in equation (4.13), the following relation can be established. 
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V'f '  =  Vf  '  (4 .16)  

The scalar function f ' may be a component of a vector function. Therefore, 

the same method can be used to establish that, for any vector function, 

B' (x',y',z',t'), the spatial derivatives can be written as 

V-B' = VB' (4.17) 

VxB' = VxB' (4.18) 

The same techniques are used to establish the relation between temporal 

derivatives. Assume a scalar function f '(x',y',z',t') and write the temporal 

derivative in the unprimed system as 

(4.19) 
dt df dt dx' dt dy' dt dt 

It is evident from equations (4.10) and (4.12) that 

f=' '  ' f 
Substituting equation (4.20) into equation (4.19) yields 

(4.20) 

dt' 

Using equation (4.16), equation (4.21) can be rewritten as 

(4.22) 
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The scalar function f ' can be a component of a vector function. Thus, if a 

vector function, F(x',y',z',t'), is defined, the same process leads to 

(4.23) 
dt' dt ^ ' 

Since the unprimed frame is the fixed, laboratory frame, it is clear from the 

left-hand side of equation (4.23) that the right-hand side is the temporal 

variation of the function E for an observer moving with velocity V. This 

derivative is also called the substantial or convective derivative and can be 

written in an alternative form 

= + (4.24) 
Dt dt ^ ' 

By using a vector identity, 

V X (F X 5) = (I • V)F - (F • V)5 + V(V • B) - 5(7 • V) (4.25) 

and since V is constant, the first and fourth terms on the right-hand side of 

equation (4.25) are zero, equation (4.23) can be written in a different form 

^  = ̂ _Vx(yx5 ' )  +  V(V-f i ' )  (4 .26)  
dt dt 

This equation is also derived from Faraday's law for moving media by 

Helmholtz [192] and others [193,194]. Using equations (4.17), (4.18) and (4.26), 

equations (4.5) to (4.8) can be expressed in the equivalent forms 
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VxH' = J'  (4.27) 

V-F  =  0  (4 .28)  

V D' = 0 (4.29) 

Vx{Ë ' -VxB ' )  =  - ^  (4.30)  
^ ' dt 

where equation (4.28) is used to simplify the form of equation (4.30). 

Now, transformations can be made. The differential equations of quasi-

static magnetic field systems in the laboratory frame are 

V x H  =  J  (4.31) 

V-B =  0  (4 .32)  

V  D=0  (4 .33)  

V x Ë  =  ~  (4.34) 
dt 

B=i jH (4 .35)  

It has been postulated that equations (4.27) - (4.30) describe the same physical 

laws as equations (4.31) - (4.34). A comparison of the two sets of equations 

shows that a consistent set of transformations is 

= 7 = 7 , B' = B, D' = D , F = £ + Vxfi , (4.36) 

The transformations in equation (4.36) relate the values of electromagnetic 

quantities in a quasi-static magnetic field system. If the displacement 
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current term had been kept, the equations of two coordinate systems would 

have been different because of the term, V • D' . In quasi-static magnetic field 

systems, this term is zero, thus there is no inconsistency. Notice that in these 

transformations, the conductivity and the permittivity have different values 

in the moving frame from those in the stationary frame. Under the Cerenkov 

transformation [187], however, the constitutive equations are invariant. 

Nevertheless, the transformation shown here agrees well with the Lorentz 

force expression, 

F = q(M + VxB) (4.37) 

Now, the relation between field variables in different frames are established. 

In the next section, the governing equation for probe velocity effects is 

discussed. 

C. Governing Equation 

It can be assumed, in a relative sense, that the probe is stationary and 

the test specimen is moving opposite to the original probe movement. This 

assumption is reasonable because a sensing device is located in the same 

moving probe so that the observer' thinks himself stationary and sees the test 

specimen moving backwards. Also, in the finite element formulation, no 

currents are assumed to be induced in the source coil. Therefore, the moving 

part has to be the test specimen. From now on, primes are omitted for 

convenience. Then, quasi-static, magnetic field equations are 
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V x H  =  J  (4.38) 

V-5=0  (4 .39)  

V  D=0  (4 .40)  

Vxf  =  -—= - ^  + Vx(Vx5)  (4 .41)  
Dt at 

B=iJ Ï Ï  (4 .42)  

From equation (4.39), B can be expressed as the curl of the magnetic vector 

potential A , i.e. 

5  =  VxJ  (4 .43)  

Substituting this into equation (4.41) gives 

V x ( Ë  +  ̂ - V x V x Â )  =  0  (4.44) 
at 

Since the curl of the terms within the parenthesis in equation (4.44) is zero, it 

can be expressed as the negative gradient of the electric scalar potential 4>, i.e. 

£  +  ̂ -VxVxJ  =  -V4> (4 .45)  
dt 

Assuming that the conducting medium is isotropic and homogeneous, we 

have 

7 = a E  (4.46) 

Substituting equation (4.45) into equation (4.46) gives 



www.manaraa.com

116 

J = -<T-^+ ffV X VX A - (TV^> 
dt 

dA . _rr. 
dt 

=-(7-z- + <TV xVxA+Jg (4,47) 

where Ty = -crV^> is the source current density. By using equations (4.42), 

(4,43), and (4,47), equation (4.38) can be rewritten as 

Vx—(VXJ)  =  7 j -< t^  +  (TVXVXJ (4 ,48)  
^ ' dt 

In the above equation, the magnetic vector potential is not defined uniquely 

since its divergence is not specified. However, in 2-D or axisymmetric 

problems, the Coulomb gauge, V • A = 0 , is automatically satisfied. For linear, 

isotropic problems, the vector identity 

Vx(VxÂ)  =  V(V-J ) -V2J  (4 .49)  

can be used with the Coulomb gauge to obtain 

— -  < T FX  V X  J- (4,50) 
II dt 

This is the general governing equation for transient cases. In steady state 

magnetostatic problems, the time derivative term vanishes, thus the 

governing equation becomes 

^v2J  =  -c tVxVXJ-J j  (4 .51)  
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For AC sinusoidal steady state problems, a phasor notation 

A = |A|cos(û)f + 0) = => ^phasor = 

~ ^^j^phasor^ ] ^ J ̂ phasor 

(4.52) 

(4.53) 

can be used to obtain the following governing equation. 

—V^A = jœaA -aVxVxA-J^ (4.54) 

where the subscript indicating a phasor quantity is omitted for convenience. 

In axisymmetric problems with uni-directional movement in the z-direction, 

- 1 d 1 d 
B — —(rA)r H  —(rA) Z  — —— 

r  dz r  dr \  oz. 
dA A 

r '^ 'dr 
(4.55) 

V^A = -V X  V X  A = -

-f è -z 
r r 

I ® i  
•I • 

= 6 (4.56) 

V x V x A  =  
f e z 
0 0 V 

f • dz 
(4.57) 

Since A and have only a 0-component, equation (4. 50) can be written as 

dA dA (4.58) 
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equation (4.51) as 

d jl d 
.dry 

(4.59) 

and equation (4.54) as 

2 
dr 

. rrdA. _ = jœaA + oV— - 7j 
az 

(4.60) 

Now, compare equations (4.50) with (3.3), (4.51) with (3.1), and (4.54) with 

(3.2), respectively. The difference in each of the three comparisons is only the 
9A 

addition of the motional induction term, which can be expressed as for 

axisymmetric problems as shown in equations (4.58) to (4.60). The presence of 

this term does not allow us to write equations (4.58) to (4.60) in the self-adjoint 

form of equation (3.20). Therefore, these equations are nonself-adjoint. 

In terms of mathematical expressions, there is a close resemblance 

between these governing equations and those found in fluid dynamics and 

heat transport problems. For example, the governing equation for steady 

vorticity transport in two-dimensions [126] is 

dx^ dy^ , 
K dW dW = M-Tr- + v^7— 

ax ax 
(4.61) 

where W is the vorticity, u and v are the flow velocity components, and K is 

the coefficient of kinematic viscosity [126] or the diffusivity [117]. In convective 

heat transport problems [127], the governing equation is written as 

K7<t)-V V<j) = 0 (4.62) 
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where K is the thermal diffusivity and V is the velocity, and 0 is the 

temperature. These two equations are mathematically equivalent to 

equations (4.59) and (4.60). In a transient problem of thermodynamics [140], 

K7(I) = + V • (Vc0) - Q (4.63) 
Ot 

where c is the specific heat, and Q is the rate of heat generation. This 

equation is equivalent to equation (4.58). Since the coefficients of the second 

order term are called diffusivity, such names as convective-diffusion equation 

and artificial diffusion are frequently used in these areas. In electro­

magnetics, a term reluctivity is used instead of the diffusivity and equation 

(4.59) does not represent diffusion phenomena. For this reason, the term 

artificial reluctivity' instead of artificial diffusion is used in this dissertation. 

Even though mathematical expressions of the governing equations are 

the same, there is a delicate physical difference. When the moving 

electromagnetic probe passes a non-uniform geometry, there is only a short 

transient period which depends on the probe velocity (i.e. traversal time of the 

probe), and no steady state situation can exist. This is truly a transient case. 

However, in fluid problems, fluid flows continuously so that a steady state can 

be assumed even if the geometry is non-uniform. Also, when transient 

problems are solved, the moving probe requires its relocation at each time 

step, while in fluid and heat dynamics problems, there is no moving object' to 

be relocated. In this respect, they appear more like wave problems. The 

consequence of this difference is reflected on the time step size. In moving 

probe problems, the time step must satisfy At = y , where h is the distance the 
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probe moves during this time step. If probe moves one element (length Ah) 

per time step, the grid Courant number, defined as C = , should be 1. 

In fluid and heat dynamics problems, there is no such restriction other than 

C < 1, which results from stability analysis. The same restriction on the grid 

Courant number can be found also in wave problems [195]. 

Having compared the equations in this chapter with those in Chapter 

III, that do not consider probe velocity effects, it is found that the difference is 

only the addition of the motional induction term. This means that the matrix 

equations developed in the previous chapter can be used without any 

alteration and only the additional matrix corresponding to the motional 

induction term is needed. 

First, consider equation (4.59) for the steady state magnetic flux leakage 

method. Except for the motional induction term, the finite element 

formulation is already completed by using equation (3.42) and the resulting 

matrix equations are shown in equations (3.51) to (3.53). To find the additional 

matrix, the same weak formulation is appUed to the motional induction term. 

D. Results from Standard Finite Element Method 

(4.64) 

Using equation (3.48), the approximation for the derivative of A with respect to 

z becomes 
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dA \ 
dz I 

dNi dN2 dNj, dN4 
dz dz dz dz . 

4 
A2 
A3 
A4 

=[fH (4.65) 

Substituting equation (4.65) into the elemental integration of equation (4.64) 

gives 

(4.66) 

Combining equation (4.66) with equation (3.50) gives 

5{A}/ v(VNf [VN]{A), + ctV[N]''[^]{A}, - 7j[N]''Lv = 0 (4.67) 

Since this equation must be satisfied for any variation ÔA, the elemental 

matrix equation can be written as 

[%{AL +[SV]JA}, = ([% +[SV],){A}, = {Q}, (4.68) 

where [SV]g = , which is not symmetric, and [S]e and {Q}e 

are shown in equations (3.52) and (3.53). Summation of all the elemental 

contributions gives the global matrix equation, 

([S]+[SV]){A} = [SK]{A} = {Q} (4.69) 

In sinusoidal steady state eddy current problems, the necessary matrix 

equation can easily be obtained from equation (3.101). Rewriting equation 

(3.101) using phasor notation, 
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[S]{A} + MC]{A} = {Q} (4.70) 

Adding the matrix [SV] developed in the above for the motional induction 

term, 

([S] + [SV] + MC]){A} = [SK']{A} = {Q} (4.71) 

In this case, each element in the stiffness matrix is a complex number. 

Note that the stiffness matrices in both cases are not symmetric because 

of the asymmetric [SV] matrix. An example of an asymmetric elemental 

matrix for a 1-D problem is shown in equation (1.5). This asymmetry is due to 

the motional induction (first order spatial derivative) term, which makes the 

governing equation nonself-adjoint. 

In general, motional induction problems are closely related to a 

dimensionless parameter called the magnetic Reynolds number, Rm =^i<yVZ, 

where I is the characteristic length of the problem. The traditional definition 

of the magnetic Reynolds number in electrodynamics literature, is the ratio of 

the induced magnetic field to the imposed magnetic field [191] or the ratio of 

the magnetic convection to the magnetic diffusion[196]. In the particular 

case where the diffusion of flux is in the opposite direction to the direction of 

motion, the magnetic Reynolds number can be expressed as the ratio of the 

diffusion time constant to the traversal time [191]. The fundamental 

interpretation of the magnetic Reynolds number, however, is always the 

same, namely that it indicates the relative importance of the convection term 

(VxVxyl ) to the second order term (V^A ). If this number is large, the 

magnetic field is altered appreciably by the motion. 
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In the finite element method, this number is defined at each element 

and called the cell magnetic Reynolds number, thus Rni=HCTVh where h is 

the length of an element in the direction of motion. If this number is larger 

than 2, the solution of equations (4.69) and (4.71) shows spurious oscillatory 

results as explained in Chapter I. Such oscillatory results are shown in this 

section. In this dissertation, all probes are assumed to move to the left and in 

the case of uniform geometries, which allow steady state analyses, probes are 

located at the center of the z-axis. 

Figure 4.2 show the RMS magnetic vector potential plots of the stationary 

remote field eddy current probe. Figure 4.2.a) shows the RMS magnetic 

vector potential magnitudes plotted on a logarithmic scale in order to show 

details of the remote field several pipe diameters away from the exciter coil. 

For example, the six bands of flux lines in the figure contain 90 %, 9 %, 0.9 %, 

0.09 %, 0.009 %, and 0.0009 % of the total flux with corresponding coutour 

intervals of 10 %, 1 %, 0.1 %, 0.01 %, 0.001 %, and 0.0001 %, respectively. An 

ordinary equipotential plot is shown in Figure 4.2.b). The relative constant 

permeability and conductivity of the tube are 150 and 0.45X10? mho/meter, 

respectively. The tube element length parallel to the direction of probe motion 

(z direction) is 1.27 mm. 

The equipotential plots obtained by applying the standard Galerkin 

method to a uniform geometry problem are shown in Figures 4.3.a) and 4.3.b) 

at the probe velocity of 10 m/sec and 50 m/sec, respectively. The 

corresponding cell magnetic Reynolds numbers are 10.77 and 53.85. Even 

though Rm exceeds 2, Figure 4.3.a) does not show any spurious oscillations. 

This may be due to extremely small oscillations and limits associated with 
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Figure 4.3. Equipotential plots of KFEC probe; 
a) V=10 m/sec (Rm=10.77), standard Galerkin, 
b) V=50 m/sec (Rni=53.85), standard Galerkin, 
c) V=50 m/sec, upwinding technique 
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the plotting device. When Rm is much larger than 2, spurious oscillations 

can be seen as shown in Figure 4.3.b). Figure 4.3,c) shows the removal of 

such oscillations by applying the upwinding technique, explained in Chapter 

V. 

Since the cell magnetic Reynolds number is composed of four variables, 

the material permeability (p.) and conductivity (a), the probe velocity (V), and 

the element length (h), each variable can cause spurious oscillations. The 

oscillations due to these different variables are investigated using the variable 

reluctance probe applied to the uniform tube geometry. To investigate the 

results effectively, a graph of the magnetic vector potential values along the 

center line of the tube wall is chosen. 

Figure 4.4 compares the results at probe velocities of 5, 50, and 100 m/sec. 

The relative constant permeability and conductivity of the tube are 100 and 

0.6x107 mho/meter, respectively and the element length is 1.59 mm. Thus, the 

corresponding Rm are 5.99, 59.94, and 119.88. In this case, Dirichlet boundary 

conditions are imposed on all the boundaries. At V=50 m/sec, small 

oscillations exist but cannot be seen in the graph because the maximum 

magnitude at V=5 m/sec is too large to show such small oscillations. At 

V=100 m/sec, relatively large oscillations can be seen at the front edge of the 

probe and at the boundary behind the probe. 

However, as can be seen in Figure 4.3, the fields are dragged behind the 

probe and at extremely high velocities, the fields may be extended beyond the 

boundary. In such cases, Neumann boundary conditions are more suitable. 

Neumann boundary conditions are also known as natural boundary 

conditions and no value needs to be specified on that boundary in the finite 
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Figure 4.4. Magnetic vector potential along the center line of tube wall 
(VR probe, Dirichlet B.C.); a) V = 5 m/sec (Rni=5.99), 
b) V = 50 m/sec (Rm=59.94), c) V = 100 m/sec (RtQ=119.88) 
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element method. The results obtained by applying Neumann boundary 

conditions are shown in Figure 4.5. As expected, the oscillations near the 

natural boundary have disappeared. However, the oscillations at the front 

edge of the probe still remain. 

Figure 4.6 shows results from two different conductivities. In this case, 

the relative permeability of the tube is 100, the element length is 4.76 mm, and 

the probe velocity is 5 m/sec. When the conductivity of the tube is 0.6x10^ 

mho/meter (Rni=17.9), no spurious oscillation occurs. If the conductivity is 

increased to 2x10? mho/meter (Rni=59.8), spurious oscillations occur again at 

the front edge of the probe. 

Additional results show the importance of mesh discretization. In this 

case, the relative permeability and conductivity of the tube are 100 and 2x10^ 

mho/meter, respectively and the probe velocity is 5 m/sec. If the element 

length is 1.59 mm (Rin=20), no spurious oscillation occurs, while the element 

length of 4.76 mm (Rin=59.8) is used, spurious oscillations occur at the same 

location as shown in Figure 4.7. This means that heavy mesh discretization 

is necessary to avoid spurious oscillations. In some cases, especially in 3-D 

problems, this requires enormous computer resources even today's 

computers cannot afford. To overcome this difficulty, an upwinding 

technique originally developed in fluid mechanics is now applied widely to 

moving magnetic fields problems. In Chapter V, this technique is explained 

and resulting oscillation-free results are shown under the same conditions 

as in this section. 

Note that almost the same values of magnetic Reynolds number (59.94 

and 59.8) are used in Figure 4.5.b) and 4.6.a), but the results are different, i.e., 
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Figure 4.5. Results obtained by applying Neumann B.C.; 
a) V = 5 m/sec (Rm=5.99), 
b) V = 50 m/sec (Rni=59.94), 
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Figure 4.6. Results from two different conductivities; 
a) a = 0.6x107 mho/meter (Rm = 17.9), 
b) <J = 2x10? mho/meter (Rm = 59.8) 



www.manaraa.com

131 

-0.05 U 1 1 1 1 1 U 

-150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 

Distance from the center of the VR probe (mm) 

Figure 4.7. Results from two different element lengths; 
a) h = 1.59 mm (Rm = 20), 
b) h = 4.76 mm (Rm = 59.8) 
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the same cell magnetic Reynolds number does not necessarily produce the 

same results. 

E. Treatment of Motional Induction Term 

The motional induction is essentially expressed as VxB.  The treatment 

of this term may depend on its interpretation. In this section, the time 

dependent interpretation and the nonlinear interpretation with respect to the 

velocity are discussed. 

1. Time Dependent Mterpretation 

The motional induction currents can exist only when the magnetic flux 

density, B , is already present. Without prior existence of the magnetic flux, 

there are no motionally induced currents no matter how fast the conductor 

may move. Since only constant velocities are considered (even the special 

theory of relativity is confined to constant velocities), this means that the 

motional induction term must be evaluated at the old time level when a 

transient problem is solved. 

The upwinding technique can also be viewed in close relation to this 

interpretation. As explained in the introduction, the upwinding technique 

[126,127] developed for the finite element method gives more emphasis to the 

upwind condition by using an asymmetric weighting function which is 

biased in the upwind direction. Another upwinding technique for the finite 

element method is based on a numerical quadrature rule [117,128,131]. When 
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the integral corresponding to the motional induction term is evaluated, a 

quadrature point, displaced in the upwind direction from the normal 

quadrature point, is used. The rest of the integrals are evaluated at the 

regular quadrature points. The upwind scheme was first developed in the 

finite difference method [124,125]. In the finite difference method, only the 

motional induction term is treated by the upwind (backward) difference 

scheme and the rest of the terms in the governing equation are treated by the 

central difference scheme. Note that these finite difference methods are used 

for spatial discretization, not for temporal discretization since the governing 

equation considered is a steady state equation. In fact, all these upwinding 

techniques are developed for the steady state equation. Therefore, the 

emphasis is given to the prior (upwind) 'position' where the probe has 

already passed in a moving probe problem. If a transient problem is 

considered, the prior position corresponds to the prior time; that is, the old 

time level. A notation for this interpretation can be written as 

where n-1 indicates the old time level. 

This interpretation agrees well with Muramatsu et al.'s work [70] even 

though view points are slightly different. Consider a moving coordinate 

system (X', Y', Z'). The governing equation to the observer moving with the 

coordinate system can be written, by using the concept of covariance, as 

(4.72) 

d A i X , r , Z )  
d t  

(4.73) 
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To the observer in the stationary coordinate system, this equation becomes 

equation (4.48). For simplicity, consider a 1-D model moving with a constant 

velocity in the z-direction as shown in Figure 4.8. The time derivative in 

equation (4.73) at a point P(Z'i) moving with the coordinate system at an 

instant t can be written as 

a4(ZJ' ^A(Z,)'-A(Z,)'-^ 

dt At 

At 

Aiz^y-Aiz,)"" _ A(z,)'-^-A(z,)'-^ Az 

At Az At 

dA(z,) , ydA'-^ 

dt dz 

dA^Zi) , ,î7 DA 
^+(y-V)A'-^=— 
dt Dt 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

(4.78) 

where zi's are the fixed coordinates. Again, the convective derivative as 

shown in equation (4.24) is obtained. However, valuable information is added 

position at t - At position at t 

P(Z'l) 

X 
N 

Az P(Z'l) 
/ 

Figure 4.8. 1-D moving model with a constant velocity 
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ôîA'~^ from this procedure. That is, the motional induction term, V—-—, is 
az 

evaluated at the old time level, (t-At)! Muramatsu et al. consider this term as 

the average flux density between zi and Z2 at the instant t-At. But, it seems 

more accurate to interpret this term as the motional induction term. 

Other information can be extracted from this mathematical derivation. 

According to equations (4.74) and (4.75), the time derivative term has to be 

evaluated by the values of A at different positions at different time levels. This 

means that if the moving coordinate system is used, mesh discretization has 

to be updated at each time level to evaluate the time derivative term. However, 

in equations (4.76) to (4.78), the time derivative term is evaluated at the present 

position (z2) even though the time levels are different. This means that the 

time derivative term can be evaluated from the present mesh discretization if 

the problem is solved in terms of the stationary coordinate system. 

This view of evaluating motional induction term at the old time level is 

applied in Chapter VI, where transient analyses for non-uniform geometry 

are discussed. 

2. Nonlinear Inteipretationwidi respect to Velocity 

Another point of view is that the motional induction term is nonlinear 

with respect to the velocity [197]. It is based on the fact that there is no sudden 

step change in velocities, such as from zero to 5 m/sec. Instead, the velocity is 

gradually increased to the final speed. In the course of gradual increase, the 

magnetic flux also changes accordingly and at the higher velocity, the 
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motional induction currents are obtained based on this changed magnetic 

flux. In a simple notation, this interpretation can be expressed as 

where A V is the incremental velocity step. This expression clearly shows 

that the motional induction term is nonlinear with respect to the velocity. 

The basic equation to solve in this case is a Poisson equation. At first, the 

equation is solved without the motional induction term. From the result of A, 

the flux density, B, is calculated and then multiplied by a small increase in 

velocity to find the motional induction currents. Using these induced 

currents as the source, the Poisson equation is solved again and the result is 

superposed with the original result. From this superposed result, the flux 

density is calculated again and the same procedures are repeated until the 

given velocity is reached. The algorithm of this procedure is as follows. 

1. Solve Poisson equation, = -ju/y 

2. From the resulting magnetic vector potential Ak, 

find flux density, Bk = V x Ak 

3. Find motional induction current density, Jik = aAVxBk 

4. Solve = 

5. Add Ak and Ak' to find Ak+i; 

k th iteration is finished, where k = 1,..., . 

6. Repeat step 2 to step 5 until the given velocity is reached. 

(4.79) 

If AV = V, direct superposition results. 
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This algorithm is applied to the variable reluctance probe case 

associated with a uniform geometry. The relative permeability and 

conductivity of the tube material used is 100 and 0.6x10"^, respectively and the 

element length used is 3.8 mm. Figure 4.9 compares magnetic vector 

potential values along the center line of the tube wall at V = 1 m/sec 

(Rm=2.87). The results included are from the direct superposition (AV = 1), 

the incremental calculation (AV = 0.5, 0.2, 0.1), and the upwinding technique. 

All the results agree well since the probe velocity is relatively slow and thus, 

Rm is small enough to prevent spurious oscillations. 

When the probe velocity is increased to 5 m/sec (Rin=14.36), slight 

discrepancies are observed at the peak as shown in Figure 4.10. The peak 

region is blown up in Figure 4.11. It shows that the smaller the velocity step 

size, the closer is the result to the upwinding result. 

Figures 4.12.a) and 4.12.b) show the equipotential plots resulting from the 

direct superposition of motional induction fields to the main fields at the 

probe velocities of 20 m/sec (Rni=57.45) and 50 m/sec (Rni= 143.6), respectively. 

As expected from the value of Rm, spurious oscillations occur. For 

comparison, the upwinding results are plotted in Figure 4.13. 

The magnetic vector potential values along the center line of the tube 

wall corresponding to Figure 4.12.a) are shown in Figure 4.14 together with 

the upwinding result of Figure 4.13.a). The result from incremental 

calculation using a velocity step size of 2 m/sec is added in Figure 4.15. It 

shows that the incremental result not only removes the spurious oscillation 

of direct superposition, but also reduces the peak value towards the 

upwinding result. The same tendency as seen in Figure 4.11 is observed here. 
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again. Therefore, it can be said that the results from upwinding techniques 

are reliable. Also, as pointed out by Hwang and Lord [197], when the 

magnetic Reynolds number is very large compared to 2, the incremental 

calculation should be used instead of the direct superposition. A drawback of 

this method is that it takes numerous iterations to obtain an accurate result. 

Compared to this, the upwinding technique provides an efficient way of 

calculation. 
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Figure 4.9. Comparison of results at V = 1 m/sec (Rm = 2.87); direct 
superposition, incremental calculations (AV = 0.5, 0.2, 0.1), 
and upwinding result 
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Figure 4.11. Blow up of peak region in Figure 4.10; 
a) direct superposition result: AV = 5 m/sec, 
b) incremental calculation: AV = 2.5 m/sec, 
c) incremental calculation: AV = 0.2 m/sec, 
d) upwinding result 
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Figure 4.12. Equipotential plots of direct superposition results; 
a) V a: 20 m/sec (Rm = 57.45), 
b) V = 50 m/sec (Km = 143.6) 



www.manaraa.com

142 

10.0 

z DIRECTION 

8.0  8 .5  9 .0  9.5 10.0 10.5 11.0 11.5 

Figure 4.13. Equipotential plots of upwinding resiilts; 
a) V = 20 m/sec (Rm = 57.45), 
b) V = 50 m/sec (Rm = 143.6) 
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Figure 4.14. Magnetic vector potential values along the center line 
of the tube at V = 20 m/sec (Rm = 57.45); 
a) direct superposition result, b) upwinding result 
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Figure 4.15. Magnetic vector potential values along the center line 
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a) direct superposition result (AV = 20 m/sec), 
b) incremental calculation result (AV = 2 m/sec), 
c) upwinding result 
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CHAPTER V 

UNIFORM NDE GEOMETRIES 

This chapter explains the upwinding technique and shows the results 

obtained by applying the technique to uniform NDE geometries associated 

with the variable reluctance (VK) probe , the differential eddy current probe, 

and the remote field eddy current (RFEC) probe. Each probe represents the 

magnetic flux leakage method, eddy current method, and RFEC method of 

NDE, respectively. Because of uniform, homogeneous geometries, it is not 

possible to obtain specific defect signals. However, this analysis is useful in 

that it provides general background knowledge whenever relative motion is 

involved. Also, it can be used to predict an optimal sensor position under 

moving probe conditions. 

A. Upwinding Techniques 

The upwinding technique was first developed in the finite difference 

method [124,125]. Noticing successful results of the finite difference upwind 

scheme, finite element researchers developed an upwinding technique for the 

finite element method [126,127] which uses an asymmetric weighting 

function biased in the upwind direction. To distinguish this technique from 

the standard (Bubnov) Galerkin method, it is often called the Petrov-Galerkin 

method because the weighting function is not the same as the shape function 

[118,130]. Later, an easier way of implementing the upwinding concept was 
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found by using a numerical quadrature rule [117,128,131]. In this section, 

these upwinding techniques are explained. For simplicity, the explanation is 

based on the 1-D version of the governing equation for steady state, 

magnetostatic problems. This 1-D analysis can easily be extended to a 2-D 

problem as long as the chosen 1-D coordinate coincides with the direction of 

probe movement. 

Consider equation (4.59) for a uniform, homogeneous geometry. 

Ignoring the source current density term and writing it in 1-D form by 

ignoring the r-component related term, we have 

i4.av |i = 0 
I I  dz  dz  

(5.1) 

where the range of z is divided into M equal elements each of length h and the 

nodes are located at z = mh (m = 0,1,2,..., M). The theoretical solution to 

equation (5.1) is 

A{z)  =  Cx^C2e^°^^  (5.2) 

where Ci and C2 can be decided by the boundary conditions. 

Applying the weighted residual method to equation (5.1), 

dz =  0  (5.3) 

where are the weighting functions. If the first term is integrated by 

parts. 

I az dz.  
^ r dw'̂  dA J 
cfe-J^ V— —az. 

dz dz  
(5.4) 
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The first term on the right hand side becomes zero as seen in Chapter III. 

Then, we have 

I âz dz  dz  
dz  =  0  (5.5) 

Since the integration is performed element by element, it can be written as 

u oz dz  dz  
dz  =  0  (5.6) 

From now on, only the elemental integration is considered. The 

contributions from each element are summed up after elemental matrix 

equations are found. Now, consider the asymmetric weighting function 

shown in Figure 1.8. This asymmetric weighting function of the upwinding 

technique is written as 

W' = 
rA^^-aF(z)| 

K + aF(z)J 
(5.7) 

where = 1 - ̂  and Nji=j- are the shape functions for the left and right 

nodes of the 1-D element, and a is the degree of upwinding. Here, F(z) is some 

positive function, such that F(z) is zero at nodes and satisfies the condition 

shown in equation (1.7). These conditions are met if we use 

F{z)  =  3N- [N2 =—fz{h-  z)  
h  

(5.8) 

Therefore, the weighting function can be rewritten as 
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Nl-^zQI-Z)  

Nj i  +  ̂ ^z {h-z)  
(5.9) 

From equation (5.6) and since A = [N]{A}, the derivatives of shape functions 

and weighting functions with respect to z are necessary. Therefore, they are 

written here. 

dz h  

dz  h  

dWr l + 3a , 6(xz  
dz  "  h 

dWj i  _ l+ ' ia  6az 
dz  h  

(5.10) 

(5.11) 

(5.12) 

(5.13) 

The first term of the elemental integration of equation (5.6) can be evaluated 

as 

rA  dW^ dA 
•^0 dz dz 

l + 3a 6ocz 
" A *2 

l + 3« 6az 
h  \  

l + 3a 6az 
u2 1.3 

Li 1 
I  h h .  [^2  

>dz 

l + 3a I 6az 

l + 3a 6ccz 1 + 3# 6az 

h '  J 

dz\ 
^2J 

= V 

h h  
Wi 

(5.14) 



www.manaraa.com

149 

and the second term as 

•dz 

Of — 1 Ï — CC 

2  — 1  —  ( X  1  +  o c  
(5.15) 

Note that the result in equation (5.14) is the same as that in equation 

(3.124). However, equation (3.124) is obtained when the weighting function is 

the same as the shape function. Therefore, we find that this asymmetric 

weighting function of the upwinding technique does not affect the integration 

of the second order spatial derivative term. The only term affected by the 

upwinding asymmetric weighting function is the first order spatial 

derivative term, that is, the motional induction term. As discussed in 

Chapter IV in relation to the time dependent interpretation of the motional 

induction term, the purpose of all the upwinding techniques is to place an 

emphasis on the upwind direction when the first order spatial derivative 

term is evaluated. 

Now, combine equations (5.14) and (5.15) to obtain an elemental matrix 

equation. 

(5.16) 
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Following the same procedure as in Chapter III, the global matrix equation 

becomes, for example. 

h i  

h i  
0 

V cfV --+-^(l-a) 0 

h i  h i  

4-1 0 

A- 0 

.A'+i. 0 

(5.17) 

Now, we can write a difference equation for node i. 

' Aj_2 + + OfCV Aj+j^——+ -^(1 — Of) Ai+i=0 (5.18) 

If we multiply -//A to equation (5.18) and writing Rm = |J.aVh, we have 

l + ̂ (l + a) jA,_i-2 +^1—^(1-a) A+i = 0 (5.19) 

If the degree of upwinding (a) is zero, as can be seen from equation (5.7), it 

corresponds to the standard Galerkin method. Note also that equation (5.19) 

gives a formula identical to that of the central difference method when a is 

zero, and when a is one, gives an upwind difference scheme. An exact 

difference solution of equation (5.19) is of the form [127] 

i4j = C3 + C4 
14-^(1 + 0) 

1—^(l — oc) 
(5.20) 

where C3 and C4 are constants to be determined by the boundary conditions. 

This solution is not oscillatory if 
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D 
(i) a = 0 (standard Galerkin method); 1 —^ > 0 <=> 2 > 

(ii) when ^ 2 ; 1 —^(1 - a) > 0 cccritical - ̂ ~ 
2 "m 

Condition (i) gives the basis of mesh refinement when the standard Galerkin 

method is used. By equating equation (5.2) with equation (5.20), Christie et al. 

[126] found that the exact solution can be obtained when 

a = cothf^V-;r- (5.21) 
V 2 / Rffi 

Note that this exact solution can be obtained only in the uni-directional 

velocity, steady state, and constant coefficient cases. Since Rm = fxaVh, a is a 

function of h. Therefore, we can use different sizes of elements and a can be 

decided for each element. 

There is an important term related to the upwinding technique. This 

term can be found as follows. Consider equation (5.18). If the standard 

Galerkin method (a = 0) were used, equation (5.18) would be 

[ ~ ^ ~ [ " " f t  ®  ( 5 . 2 2 )  

Now, compare equation (5.22) with (5.18). Equation (5.22) would be the same 

as equation (5.18) if v in equation (5.22) were replaced by v+ . This 

means that if we add the term, , to the original reluctivity (v) and solve 

the new governing equation by the standard Galerkin method, we can get the 

same answers as upwinding results. Consequently, the upwinding 

technique artificially increases the reluctivity by the amount of the above 
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additional term to suppress spurious oscillations. This additional term is 

called 'artificial diffusion' in fluid mechanics, but in this dissertation, it is 

called 'artificial reluctivity' because of the differences in terminology. A 

more rigorous mathematical derivation of this term can be found in 

reference 128. Although this term removes spurious oscillations, it also 

causes a numerical dissipation. Examples of numerical dissipation are 

shown in the next section. 

Another upwinding technique developed by Hugh [117] is based on a 

numerical quadrature rule. However, the upwinding quadrature point is 

different from the ordinary quadrature point. It is displaced in the upwind 

direction from the ordinary point, and used only for the integration of the 

motional induction term. The amount of displacement plays the same role as 

a, the degree of upwinding. Figure 5.1 compares the ordinary quadrature 

point with the upwinding, displaced quadrature point. This method is easier 

to implement the upwinding concept into the computer program. 

The rest of this chapter shows and discusses the upwinding results for 

the three probe cases applied to uniform geometries. In this dissertation, the 

solution region is discretized into rectangular elements and the example of 

such discretization is shown in Figure 5.2. The heavily discretized region 

corresponds to the tube. 

R Results of the Variable Reluctance Probe Case 

Figure 5.3 show the equipotential plots around the variable reluctance 

probe at V = 0 m/sec and V = 5 m/sec. It can be noticed that magnetic fields 
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Figure 5.1. Comparison of an ordinary quadrature point and a up winding 
quadrature point for motional induction term 
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Figure 5.2. An example of mesh discretization 
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Figure 5.3. Equipotential plots around the variable reluctance probe; 
a) V = 0 m/sec, b) V = 5 m/sec 
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are dragged behind the probe and as a result, magnetic fields do not penetrate 

far into the firont edge of the tube. 

Figure 5.4 shows the upwinding results corresponding to Figure 4.4. 

Even though the Dirichlet boundary condition (B.C.) is used, the upwinding 

technique removes spurious oscillations everywhere. However, at V = 100 

m/sec, a sudden drop to zero potential at the boundary behind, is noticed. 

This is not reasonable, so the Neumann B.C. is used for that boundary to get 

reasonable results as shown in Figure 5.5. Therefore, we can conclude that 

the natural boundary condition should be used when the probe velocity is so 

high that magnetic fields are expected to cross over the boundary. 

Figure 5.6 compares the upwinding result with the standard Galerkin 

result when there is no oscillation in the standard Galerkin result (i.e. Rm is 

small). The relative permeability and conductivity of the tube are 100 and 

0.6x10? mho/meter, respectively. The" element length is 4.76 mm and the 

probe velocity is 5 m/sec. Thus, Rm is 17.9. When the conductivity is 

increased to 2x10? mho/meter (Rm = 59.8), spurious oscillations occur in the 

standard Galerkin result as shown in Figure 5.7. The upwinding technique 

removes such oscillations, but at the cost of accuracy. This can be seen in 

Figure 5.7. The loss of accuracy is due to the numerical dissipation 

associated with the artificial reluctivity term. Although small, the same 

numerical dissipation can be noticed in Figure 5.6. Therefore, when there is 

no oscillation in the standard Galerkin result, the upwinding technique 

should not be used. The loss of accuracy is more evident in Figure 5.8 where 

the standard Galerkin, non-oscillatory result obtained by using smaller 

elements is added (Rm = 20). Although the upwinding technique provides a 
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Figure 5.4. Upwinding results corresponding to Figure 4.4 
(Dirichlet B.C.); a) V = 5 m/sec (Rm = 5.99), 
b) V = 50 m/sec (Rm = 59.94), 
c) V = 100 m/sec (Rm = 119.88) 
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Figure 5.5. Upwinding results obtained by applying 
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Figure 5.6. Comparison of results (Rm = 17.9); 
a) upwinding result, 
b) standard Galerkin result 



www.manaraa.com

160 

1.05 - 1 I 
1.00 - |b 1 
0.95 

~ 

0.90 
1 

0.85 r Li a 
_ 0.80 

-

^ 0.75 — 

0 0.70 - -

3r 0.65 - -

"3 0.60 — 
' 

— 

S3 0.55 — — 

S 
•g 0.50 — — 

O. 
k 0.45 — — 

o 
S 0.40 — — 

Q) 
> 0.35 — — 

o 
0.30 — — 

2 
g, 0.25 -

; " 
CO 
s 0-20 1 

0.15 — i \ 
0.10 \ 
0.05 

0.00 ' 

-0.05 1 1 1 1 1 ' L 
-150.00 -100.00 -50.00 0.00 50.00 100.00 150.0C 

Distance from the center of the VR probe (mm) 

Figure 5.7. Comparison of results (Rm = 59.8); 
a) upwinding result, 
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Figure 5.8. Comparison of results; 
a) standard Galerkin result (small mesh, Rni=20) 
b) standard Galerkin result (large mesh, Rni=59.8) 
c) upwinding result (large mesh, Rm=59.8) 
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non-oscillatory result, Figure 5.8 shows that it is less accurate than the 

standard Galerkin result from smaller elements. Then, why is this 

technique used? The first reason is that there are situations where, 

especially in 3-D problems, heavy mesh discretization is practically 

impossible because of the limitations in today's computer resources. The 

second reason is that even if relatively heavy mesh discretization is used, 

when the material properties or probe velocities involved are too large, 

spurious oscillations cannot be avoided. We have already seen such 

oscillations due to a high material conductivity (Figure 4,6) and due to a high 

velocity (Figure 4.4) in Chapter TV. 

Although this study of a uniform geometry cannot provide defect signals, 

it gives useful background information. One example is the optimal location 

of a sensing Hall plate for the variable reluctance probe. Figure 5.9 shows the 

normal component of flux along the line of possible Hall plate locations. Note 

that they are not output NDE signals. As the probe velocity increases, the 

normal component of flux is decreased. The possible locations of a Hall plate, 

which is mounted on the periphery of the bobbin (see Figure 2.3), are position 

numbers 13, 14, 15, 22, 23, and 24 in Figure 5.9. Among them, position 15 gives 

the maximum signal strength and is least affected by the probe velocity 

changes. Therefore, this position, i.e. the innermost side of the leading edge 

of the probe, would be the optimal position of the sensor. 
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Figure 5.9. Normal component of flux along the line of possible 
Hall plate locations; a) V = 5 m/sec, b) V = 50 m/sec, 
c) V = 100 m/sec 
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C. Results of the Differential Ed  ̂Current Probe Case 

Figure 5.10 show the RMS equipotential plots around the differential 

eddy current probe at V = 0 xn/sec and V = 5 m/sec. Again, the backward shift 

of the fields can be noticed. Figures 5.11 and 5.12 show the RMS magnetic 

vector potential values at the center Une of the tube wall. As the probe velocity 

increases, the trailing RMS potential value and the imbalance between the 

two values increase. Figure 5.13 shows the individual impedance variations 

of the leading and trailing coils as the probe velocity increases. The resulting 

differential impedance variation due to the different probe velocities is shown 

in Figure 5.14. 

At this point, we need to think about the benefit of using a differential 

eddy current probe. Because of the differential nature, this probe is relatively 

insensitive to environmental effects and highlights the variations due to 

defects by cancelling the quiescent values of each coil. However, if this probe 

is used in high speed moving inspection, the differential impedance changes 

together with the probe velocity, even in uniform geometries as can be seen in 

Figure 5.14. As a result, the output impedance contains this motional 

impedance variation. To extract only the defect signal, a similar 

normalization process as in the case of an absolute coil is required, but in this 

case, by using the base differential impedance value of the specified probe 

velocity. Then, the practical benefit of using a differential eddy current probe 

is lost. To utilize the beneficial aspects of this probe, it should not be used in 

high speed moving inspection. 
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Figure 5.10. RMS equipotential plots around the difTerential eddy 
current probe; a) V = 0 m/sec, b) V = 5 m/sec 
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Figure 5.11. RMS magnetic vector potential values at the center line of 
the tube wall; a) V = 0 m/sec, b) V = 5 m/sec 
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Figure 5.12. RMS magnetic vector potential values at the center line 
of the tube wall; a) V = 0 m/sec, b) V = 9 m/sec 
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Figure 5.14. Differential impedance variation due to probe velocity 



www.manaraa.com

170 

D. Results of the Remote Field Ed  ̂Current Probe Case 

In Figure 5.15, the RMS magnetic vector potential magnitude is plotted 

on a logarithmic scale at V = 0, 3, and 6 m/sec. Again, the backward shift of 

the fields can be noticed together with the shift of the potential valley. 

However, the potential valley in front of the exciter coil is not shifted much. 

The same phenomena are found in the phase knot locations as shown in 

Figure 5.16. Figure 5.17 and 5.18 show the RMS magnetic vector potential 

magnitude in a logarithmic scale and the phase of the magnetic vector 

potential at the center line of the tube wall. Again, the same phenomena are 

found in both figures. Figure 5.19 shows the phase knot location changes, 

found in Figure 5.18, with respect to the probe velocity. 

Finally, the induced current density in the tube wall is investigated. In 

this case, the induced current density includes the motional induction 

current density so that it can be written as 

f)A 
Ji=iaaA + dV^ (5.23) 

a z  

The investigation is performed at three locations. One is just above the 

exciter coil and the other two locations are ±3 tube diameters away from the 

exciter, that is, the front and trailing remote field regions. All the results of 

RMS induced current densities are shown in a logarithmic scale. Figure 5.20 

shows the results obtained at just above the exciter coil. Since the induced 

currents at the inner diameter are larger than those at the outer diameter, 

we may confirm that the energy is directed from the inside to the outside of 

the tube. This pattern does not change even if the probe velocity is increased. 
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Figure 5.15. Logarithmic scale plots of RMS magnetic vector potential 
magnitude; a) V = 0 m/sec, b) V = 3 m/sec, c) V = 6 m/sec 
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Figure 5.16. Equi-phase plots of magnetic vector potential; 
a) V = 0 m/sec, b) V = 3 m/sec, c) V = 6 m/sec 
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Figure 5.17. Log scaled RMS magnetic vector potential magnitude 
at the center line of the tube wall; a) V = 0 m/sec, 
b) V = 3 m/sec, c) V = 6 m/sec 
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Figure 5.19. Changes in phase knot location due to probe velocity 
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Figure 5.20. Log scaled RMS induced current densities near the exciter coil; 
(V = 0, 3, 6, and 9 m/sec) 
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Figure 5.21 shows the results at 3 diameters behind the exciter coil. When the 

probe velocity is low, the induced currents at the inner diameter are smaller 

than those at the outer diameter. Therefore, the energy is directed from the 

outside to the inside of the tube. However, this pattern changes as the probe 

velocity is increased. This indicates that if the sensor coil is located in this 

area, it is affected very much by the probe velocity effects. On the other hand, 

the results at 3 diameters ahead of the exciter show promise in finding the 

optimal sensor location. These results are shown in Figure 5.22. In this case, 

even if the probe velocity is increased, the characteristics of the remote field 

region do not change so that the probe velocity effects are at a minimum at 

this location. Therefore, the sensor coil needs to be located in front of the 

exciter coil when high speed moving inspection is performed. 
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Figure 5.21. Log scaled RMS induced current densities at 3 diameters behind 
the exciter coil; (V = 0, 3, 6, and 9 m/sec) 
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CHAPTER VI 

NONUNIFORM NDE GEOMETRDSS 

When a moving electromagnetic probe passes a non-uniform geometry, 

the distribution of motionally induced currents is different at each probe 

position, thus at each time. This leads to a transient situation if DC or low 

frequency AC is used for excitation, as in the case of electromagnetic NDE. 

Unlike the tum-on/off transients, there is no steady state in this situation 

because the transient condition occurs only during the short traversal time of 

the probe passing the non-uniform geometry such as a defect or a support 

plate. Because of this truly transient nature of the moving inspection 

problem, sinusoidal AC steady state based eddy current methods of NDE are 

not suitable for high speed moving probe inspection and the probe velocity 

should be restricted to such a low speed as for motional induction currents to 

be ignored. Although eddy current testing equipment, such as the eddy scope, 

shows some signals even in fast moving probe inspection, they do not provide 

accurate information about the defect because impedance plane trajectories 

themselves cannot be defined in the transient situation. To model such 

testing equipment signals, an additional modeling for the equipment itself is 

thus required. Because of this reason, this dissertation restricts its attention 

to the magnetic flux leakage method of NDE and the variable reluctance 

probe. 

The transient analyses in this situation are not often found in 

electromagnetics. Although the upwinding technique has been used with 
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time step methods [71,79], as we have seen in Chapter V, it shows some 

numerical dissipation even in steady state problems. Thus, if this technique 

is used with time step methods, it would produce too much error due to the 

accumulation of such numerical dissipation at each time step. Therefore, the 

analysis is concentrated on the transient problem itself, and successful time 

step algorithms are adapted from a study of the convective-difiFusion equation 

in fluid mechanics. In this chapter, three such time step methods are 

studied to find out whether they can be used in our moving probe problem. 

They are Donea's method [142,143], Zienkiewicz's method [140,144,145], and 

Leismann and Frind's method [146]. For convenience, the 1-dimensional 

governing equation is used for the explanation of these methods. The results 

obtained by applying Donea's method and Leismann and Frind's method are 

shown and compared. The results show that Leismann and Frind's method 

is more suitable for our moving probe inspection problem. 

In the transient analysis explained in Chapter III, spatial discretization 

is performed first and temporal discretization later. This is the traditional 

way of solving transient problems in the finite element method. However, the 

three methods described in this section consider temporal discretization first 

and then spatial discretization is performed by using the standard (Galerkin) 

finite element method. This is because the time dependent artificial term is 

found during the temporal discretization and this allows us to use the 

standard Galerkin method the same way as we have seen in the upwinding 

technique. Therefore, for simplicity, the explanation is restricted to temporal 

discretization. 
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A. Various Time Step Methods 

1. Donea's Method 

The 1-D version of the governing equation can be found from equation 

(4.58) by ignoring the r-component related term. Writing it in a different 

form, 

dt dz dz 
(6.1) 

Now, consider the forward Taylor series expansion shown in equation (3.106), 

including up to the second order time derivative. Rewriting this equation by 

multiplying a, 

= OA" + Afcr^ + ̂  0-^^ 
dt 2 dr 

(6.2) 

Since the forward difference method is used, equation (6.1) needs to be 

evaluated at the old time level. Then, we can write 

(6.3) 

and. 

i2 An d'-A 
• ? 

dt' 
2 
dt 

d 
dt dz' dz 

(6.4) 
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where Jg is the DC, constant, source current density so that Jg" = Jg'^+l, thus 

it is written without time superscript. Since the order of the time derivative 

and the spatial derivative can be changed, equation (6.4) becomes 

1 dA" d 84" (6.5) 

Note here that the derivative of current density, which is constant, is 

zero. Now, approximating the time derivative term as 

84" A 
dt 

n+1 -A" 
Af 

(6.6) 

and leave equation (6.5) in its mixed spatial-temporal form, we have 

d^A" 1 d 2 f 

dt^ t idz'  At 
-aV— 

oz At 
(6.7) 

Substituting equations (6.3) and (6.7) into equation (6.2) gives 

1 aV d 
At 2fl  dz^ 2 dz 

<T 1 d CV d 
At 2/i dz 2 dz 

A" (6.8) 

This is Donea's original work [143]. 

However, the interpretation of this work by Zienkiewicz [144,145] is 

slightly different. Replacing the first time derivative on the right hand side of 

equation (6.5) by using equation (6.2) and the second time derivative by using 

equation (6.3), 

d^A" 1 
dt"- 11 dz' At 
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Ignoring higher order terms, i.e., third and fourth terms on the right hand 

side, gives 

1 f 
d? II d? At 

2 A n 
(6.10) 

Substituting equations (6.3) and (6.10) into equation (6.2) gives 

cr = Ô— (7V^— + J,+ 
At fi dz^ 

Rearranging equation (6.11), 

At 
A«-^l = 7,+ — + — ^  < t v 2  

At 2/x dz 2 dz dz 
A" (6.12) 

This is Zienkiewicz's interpretation of Donea's work. This equation is 

compared with that of Zienkiewicz's method. 

2. Zienkiewicz's Method 

Consider equation (6.1). If this equation is written in the moving 

coordinate system, the convective derivative discussed in Chapter IV can be 

used and therefore, the velocity term disappears. 

DA 
r 
Dt 

^J_^A 
I dz 2 (6.13) 
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where % , the moving coordinate, is constant for any moving body. This 

equation is self-adjoint in the spatial coordinate and thus the standard 

Galerkin finite element method can be used. We could use this equation 

directly, but this would necessitate the continuous use of updated meshes 

which has many practical inconveniences. As we wish to retain a fixed 

spatial mesh, the time domain is first discretized. Introducing the general 0 

method for the time domain approximation into equation (6.13), we can write 

Since the current density is constant, it is written without time level 

indication. Now, consider the characteristic curve shown in Figure 6.1. 

(6.14) 

t 
À 

n+1 
F 

t 

t 
n 

Constant 

VAt z 

Figure 6.1. Relation between moving and fixed coordinate 
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Since the constant probe velocity is considered, the characteristic curve is a 

straight line. However, Zienkiewicz's method is based on the general variable 

velocity so that a local Taylor expansion is used to find A(% ,tn) at point P from 

the value at point P'. The benefit of using a Taylor expansion is that mesh 

movement or updating can be avoided. This can be shown as follows. It is 

assumed that at time t"+l the moving and fixed coordinates coincide at point 

P'. Now, define 

(6.15) 

and using a local Taylor expansion, evaluate A" at point P in order to insert it 

into equation (6.14). That is. 

V^t 
dz dz^ 

dz 2 *2 
(6.16) 

Inserting this into equation (6.14) and ignoring the higher order terms, gives 

Af dz'^ 2 dz^ J \^^ dz' 

Rearranging equation (6.17), we get 

=7j + 
At IJ.dz \ 

1 d^ aV^àt d^ 
"''a: 

A" (6.18) 
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The spatial discretization using the standard finite element method is then 

applied to this equation. Because of the general 0 time step, this approach is 

more versatile than other methods. 

3. Leismann and Frind's Method 

In this method, an arbitrary artificial term is introduced a priori and 

separate, unknown time weighting factors are used for individual terms in 

the governing equation. The unknown artificial term and time weighting 

factors are decided during the process of minimizing the errors. 

Consider equation (6.1), Introducing the artificial term (v*) and using 

separate time weighting factors, we have 

il dz' 

+daV' 

A! 

—+a -da)v 2 

dz 

+y. 

dz 

(6.19) 

Now, apply a Taylor series expansion. For the second order accuracy, the 

origin of the Taylor expansion is chosen to be the midpoint tn+At/2. Rewriting 

equations (3.107) and (3.108), 

= A 
2 

A" = A ' At\ At 

/ 2 J 2 

dt 

At 

8 dt' 

d^A 

2 J 2 dt 8 dt' 

(3.107) 

+ î?(Ar^) 

(3.108) 
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Now, substitute these two equations to equation (6.19). The term on the left 

hand side becomes 

 ̂ (6.20) 
At dt ^ ' 

where A = A(tn + At/2). The two terms corresponding to the second order 

spatial derivative term become 

and those for the velocity term, 

—0y£TV —r (1 ~ Oy)(Ty—— = (— 0y )CTVAÏ——-— gV (6.22) 
dz dz 2 dz at dz ^ ' 

and those for the artificial term, 

(6.23) 
dz dz dz 2 dz dt 

Substituting equations (6.20) " (6.23) into equation (6.19) gives 

ne^ - (i -

+ v*-^A + (da-~)v*àt-^^ + ù(At^] (6.24) 
dz 2 dz ot ^ ' 
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Note that the first row of equation (6.24) is exactly the same as the governing 

equation (6.1). Therefore, the rest of equation (6.24) is the error. In order to 

achieve second order accuracy, these terms have to be made zero. 

The original purpose was to set up a symmetric coefficient matrix. This 

can be done by evaluating the velocity term at the old time level because only 

the velocity term produces a non-symmetric matrix and therefore, this term 

must not be in the coefficient of A^+l. The next subsection discusses this 

further. As explained in Chapter IV, however, the reasoning of this 

dissertation for evaluating the motional induction term at the old time level, 

is different and is based on the observation of motional induction phenomena. 

Therefore, 0v must be zero. 

Rewriting error terms by using equation (6.1) and neglecting the fourth 

order derivative term, we get 

^ + (^a ~ 

In this process, a division by a has to be used so that for consistency, the 

conductivities should not be zero even in air. This is not a serious problem 

since a small value, such as 1, can be used and is negligible compared to the 

usual magnetic material conductivity of 10® ~ 10?. For equation (6.25) to 

disappear, each coefficient must be zero. But since 6v needs to be zero from 

the earlier discussion, we can decide on 0d and v*. That is 

0^=1, (6.26) 
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Note that the artificial term just obtained can also be found in equations (6.12) 

and (6.18). The yet unknown value of 6a is to be decided by stability analysis. 

For a Courant number of 1, the standard von Neumann stability analysis 

shows that stability can be achieved if > 1 / 3 [53], and unlimited stability is 

guaranteed when 0^ > 1 / 2 [146]. Finally, substituting these values into 

equation (6.19), we have 

At n dẑ  

1 . oV^At 
-^a 

2 dz' 
A" (6.27) 

4. Comparison ofThreeMetibods 

If we compare the final equations of these three methods, we may be able 

to extract some valuable information. Table 6.1 compares these equations. 

First, consider equations (6.12) and (6.18). These are exactly the same if 0 in 

equation (6.18) is 1/2. In the next subsection, various aspects of these 

equations are examined. 

The Hvmmetrv of the coefficient matrix 

As noted in Chapter IV and V, the second order spatial derivative term 

and time derivative term (in these cases, 1/At , since it is separated into the 

left and right hand sides) always produce symmetric matrices, but the 

velocity term gives a non-symmetric matrix. Therefore, the coefficient in 

equations (6.12), (6.18), and (6.27) would produce a symmetric matrix, while 

that in equation (6.8) would produce a non-symmetric matrix. In steady state 

problems, we have noticed that the asymmetry of the stiffness matrix due to 
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Table 6.1. Comparison of final equations 

Donea: 

Ï a I ^ aV d Atl+l = 7^ + 
At 

1 <9^ aV d' 
A" (6.8) 

Af Iji dz^ 2 dz 
= 7^ + 

At 2fj .  dz^ 2 dz 
A" (6.8) 

Donea-Zienkiewicz : 

("cT 1 dn = J •—dV^̂ -!y-aV— 
2 * 

A" (6.12) 
At 2/x dz^ 

= J 
_Ar " Ij i  dz^ 

•—dV^̂ -!y-aV— 
2 * 

A" (6.12) 

Zienkiewicz : 

[ " - E '  ̂ 2  
[Af H dz _ 

1 ^2 ^2 

2 *2 
— (TV— 

dz 
A" (6.18) 

Leismann and Frind : 

a I 

|_Af IX dz} 
A aV^At d^ 

2 
A"+L = = 7j + (Tv4-

az 
A" (6.27) 

the velocity term causes spurious oscillations. Therefore, we may predict that 

Donea's original method, represented by equation (6.8), will produce such 

oscillations, too. 

Artificial term 

Note that the term is present in equations (6.12), (6.18), and (6.27). 

However, equation (6.8) does not include this term. Also, if we investigate all 

the terms on the right and left hand sides ignoring the time levels, all 
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equations are well matched, but equation (6.8) is short of this term. In fact, 

this is the artificial term which corresponds to the artificial reluctivity found 

in the upwinding technique. However, it is now time dependent. Equating 

the two artificial terms gives 

= (6.28) 
2 2 h 

where C is the grid Courant number as mentioned in Chapter IV. It should 

be noted that the grid Courant number should be 1 in the moving probe 

problem since the probe has to be relocated at each time step. Therefore, the 

probe should not move more than one element length during one time step. 

In relation to the upwinding technique, this means that we are using a = 1, 

which corresponds to the finite element full upwinding, and the finite 

difference upwind scheme. In the upwinding technique, the artificial 

reluctivity term plays an important role of suppressing spurious oscillations. 

In a parallel sense, then, since equation (6.8) does not have the artificial term, 

spurious oscillatory results can be predicted. Also, since the artificial term is 

present, the standard finite element method can be used as we have seen in 

Chapter V. 

Evaluation of motional induction term at the old time level 

As was discussed in the time dependent interpretation of the motional 

induction term in Chapter IV, this velocity term (also equivalently, first order 

spatial derivative term) has to be evaluated at the old time level. In fact, this 

is related to the symmetry of the coefficient matrix. Since the velocity term 

always produces a non-symmetric matrix, it has to be evaluated at the old 
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time level to achieve a symmetric coefficient matrix. This idea of evaluating 

at the old time level is also supported by the concept of upwinding techniques 

and by a moving coordinate system analysis as mentioned in Chapter IV. 

Zienkiewicz's method also corresponds to the moving coordinate system 

analysis. Equations (6.12), (6.18), and (6.27) evaluate the motional induction 

term at the old time level. However, in equation (6.8), it is separated into the 

present and old time levels. 

All of the comparisons predict that equation (6.8) would produce 

spurious oscillations. This has actually happened in the moving probe 

simulation. This result and that of Leismann and Frind's method are shown 

in the next section. 

B. Results of Transient Analyses Applied to Non-Uniform Geometry 

Numerical experiments are performed for two cases. First, to validate 

the time step algorithm, steady state results obtained by using a uniform 

geometry are compared with upwinding results. After validating the time 

step method, it is applied to a non-uniform geometry to obtain an output NDE 

signal. 

In the first experiment, the steady state, magnetostatic solution is used 

for the initial condition to remove tum-on transient effects and the time step 

calculation is continued until steady state is reached. In the second 

experiment, a support plate is included as a non-uniform geometry. This 

situation is shown in Figure 1.6. Initial conditions are obtained from the 
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steady state result of a moving probe without a support plate, thus using the 

results of the former analysis. The sensing Hall plate is located at the 

innermost side of the leading edge of the variable reluctance probe since this 

location is found to be the optimal position of the sensor as we have seen in 

Figure 5.9. 

Figure 6.2 shows the results obtained by applying Donea's time step 

method. Results from both Dirichlet boundary conditions and Neumann 

boundary conditions are shown. Compare these results with Figure 4.4 and 

Figure 4.5. Although there is an improvement in the front edge of the probe, 

these results show spurious oscillations. Figure 6.3 compares the result from 

Donea's method using Neumann boundary conditions with the standard 

Galerkin result and the upwinding result. The result is better than that of 

the standard Galerkin, but not as good as the upwinding result. In both 

figures, probe velocity is 100 m/sec and the element length used is 1.59 mm. 

The relative constant permeability and conductivity of the tube are 100 and 

0.6x10? mho/meter, respectively. The resulting cell magnetic Reynolds 

number is 119.88. 

Another oscillatory result from Donea's method is shown in Figure 6.4. 

In this case, |ir = 100, a = 2x10? mho/meter, V = 5 m/sec, and the element 

length is 4.76 mm (Rm = 59.8). The result exactly reproduces the standard 

Galerkin result. Since these two results are exactly superimposed, compare 

with Figure 5.7. From these results, the predictions on Donea's time step 

method are proven. 

On the other hand, the results from Leismann and Frind's method 

exactly reproduce upwinding results. This is shown in Figure 6.5. If we 
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Figure 6.2. Results obtained from Donea's method; 
a) Dirichlet B.C., b) Neumann B.C. 
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Figure 6.3. Comparison of results (Rm = 119.88); 
a) standard Galerkin result, 
b) result from Donea's method, 
c) upwinding result 
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Figure 6.4. Comparison of results (Rm = 59.8); 
a) standard Galerkin result, 
b) result from Donea's method, 
c) upwinding result 
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Figure 6.5. Comparison of results (Rm = 59.8); 
a) standard Galerkin result, 
b) result from Leismann and Frind's method, 
c) upwinding result 
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compare Figure 6.5 with 6.4, the difference between the two time step methods 

can be clearly seen. The same tendency happens even in small Rm. This is 

shown in Figure 6.6 where Rm is 20. These results confirm the validity of 

Leismann and Frind's time step method. 

Even though the results from Donea's method oscillate, this method is 

still applied to the non-uniform geometry case. In this case, the material 

properties of the tube used in the former steady state analysis are used as the 

support plate material properties. That is, [Xr = 100, a = 2x10"^ mho/meter, V = 

5 m/sec, and the element length is 1.59 mm (Rm = 20). The results obtained 

from Donea's method and Leismann and Frind's method are compared in 

Figure 6.7. After the probe passes the support plate, the result from Donea's 

method starts oscillating. This can be seen more clearly in Figure 6.8 where 

the Hall plate signal is shown for an extended period. However, the results 

from Leismann and Frind's method do not show any oscillation. This result 

was unexpected because both methods reach steady state in the uniform 

geometry case. To find out the reason, the Hall plate signal is monitored to 

see how each method reaches steady state. For Donea's method, the 

outermost side of the leading edge of the probe (position number 13 in Figure 

5.9) is chosen for monitoring the signal changes. For Leismann and Frind's 

method, the innermost side (position number 15 in Figure 5.9) is chosen. 

Figure 6.9 and 6.10 show the monitored results from Donea's method and 

Leismann and Find's method, respectively. These results show that Donea's 

method reaches steady state very slowly with dying out oscillations, while 

Leismann and Frind's method reaches steady state very quickly. These 

findings may explain the reason for the oscillation of Donea's method after 
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Figure 6.6. Comparison of results (Rm = 20); 
a) standard Galerkin result, 
b) result from Leismann and Frind's method, 
c) up winding result 
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Figure 6.7. Comparison of Hall plate signals; 
a) results from Leismann and Frind's method 
b) results from Donea's method 
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Figure 6.8. Comparison of Hall plate signals (extended period); 
a) results from Leismann and Frind's method, 
b) results from Donea's method 
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Figure 6.9. Convergence characteristic of Hall plate signal 
(Donea's method); a) upwinding result, 
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c) standard Galerkin result 
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passing the support plate. That is, in Donea's method, the transients caused 

by the support plate last long so that oscillations continue to exist, while in 

Leismann and Frind's method, the transients due to the support plate die out 

very quickly so that no oscillation occurs. These figures also show that the 

result from Donea's method converges to the standard Galerkin result and 

that from Leismann and Frind's method converges to the upwinding result. 

Figure 6.11 compares the Hall plate signal obtained from Leismann and 

Frind's method with the magnetostatic result obtained at every probe 

position. In this specific problem, the probe speed of 5 m/sec is not critical in 

interpreting the output NDE signal, but it shows that the signal strength is 

weakened if the probe speed is increased. 

Finally, the changes of flux patterns are shown as the probe passes the 

support plate. For comparison, Figure 6.12 is included which shows the 

magnetostatic result (V = 0) obtained at each probe position. Figure 6.13 

shows the results when the probe velocity is 5 m/sec. In Figure 6.13, a skin 

effect on the surface of the ferromagnetic support plate is clearly seen. Since 

the excitation is DC, this skin effect has to be explained by motional induction 

currents, and therefore, it strongly supports the validity of the results and 

Leismann and Frind's time step algorithm. 
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Figure 6.12. Flux plots at V = 0 m/sec (magnetostatic results) 
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CHAPTER Vn 

CONCLUSION AND FUTURE WORK 

The main objective of this dissertation is the finite element study of probe 

velocity effects for electromagnetic NDE. This chapter summarizes the work 

done in this dissertation and suggests areas of future work. 

A. Summary and Conclusion 

Magnetic flux leakage testing pigs used for the inspection of gas pipe 

lines are operated at a speed of 20 miles (33.3 Km) per an hour. At this speed, 

probe velocity effects are unavoidable and affect the output NDE signals. 

Numerical modeling of these effects has been very difficult because the 

governing equation is nonself-adjoint. Especially in NDE environments, the 

associated geometries are not uniform so that care should be taken in 

choosing the proper form of analysis. This dissertation has shown that probe 

velocity effects associated with non-uniform NDE geometries must be solved 

by a transient analysis. 

Laboratory experiments for this high speed moving test situation are 

difficult to carry out. Under these circumstances, even if a theoretical 

solution is obtained, there is no way to prove the validity of the solution. For 

this reason, this dissertation starts with a uniform geometry and adopts a 

well established numerical technique, called upwinding, as a test bed. By 
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comparing the transient solutions at steady state with the upwinding results, 

the chosen transient analysis can be validated. 

The upwinding technique was originally developed for steady state fluid 

flow problems and has been applied to electrical engineering problems such 

as electromagnetic lévitation, electromagnetic launchers, and electro­

magnetic brakes. Although there exists a subtle difference between moving 

probe and fluid flow problems, the governing equations have the same form, 

known as the convective-difTusion equation in fluid mechanics. Unlike the 

most governing equations encountered in engineering problems, this 

equation includes a first order spatial derivative, which corresponds to the 

motional induction term in the case of moving electromagnetic probe 

problems. This term makes the governing equation nonself-adjoint and for 

this type of equation, standard numerical techniques based on the domain 

method suffer from spurious oscillations if the magnetic Reynolds number is 

larger than 2. This dissertation shows such oscillations caused by each 

component of the magnetic Reynolds number. Since the element size is the 

only component that can be freely chosen, heavy mesh discretization is 

required to avoid spurious oscillations. This causes practical difficulties in 

using computer resources and therefore, the upwinding technique is 

developed. 

In this dissertation, this technique is applied to uniform geometries 

associated with the magnetic flux leakage, eddy current, and the remote field 

eddy current methods of NDE. For each method, representative probes are 

selected for axisymmetric numerical experiments. These are the variable 

reluctance, differential eddy current, and remote field eddy current probes 
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used in tube inspection. Although this technique cannot provide output NDE 

signals because of uniform geometries, it provides useful background 

knowledge when the relative motion is involved in the problem, such as the 

pattern of field distribution and the optimal position of the sensor. The 

results also show that the differential eddy current probe loses its benefits if it 

is used in high speed moving inspection. 

Experiences with this technique also provide insights into motional 

induction phenomena. The technique's emphasis on the upwind condition 

supports the idea of evaluating the motional induction term at the old time 

level which is gained from the observation of motional induction phenomena. 

A nonlinear interpretation of motional induction phenomena in terms of 

velocity is also studied, but found that the solution converges to the upwinding 

result. The technique also provides information about the artificial reluctivity 

term whose existence is inevitable for oscillation firee solutions. However, this 

artificial term causes numerical dissipation, so that the accuracy is lower 

than that of using extremely small elements. This inaccuracy is illustrated 

by using the magnetic potential values at the center line of the tube wall. 

Because of this numerical dissipation, if the upwinding technique were 

applied to time step recurrence calculations, large errors would build up. 

To study probe velocity effects in a non-uniform geometry, therefore, the 

analysis has to be concentrated on the transient equation itself and a new 

time dependent artificial term needs to be found. For this purpose, three time 

step methods, originally developed in fluid dynamics, are studied and 

numerical experiments are performed to determine whether they can be 

applied to the moving probe problem. As a result, it is found that Leismann 
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and Frind's time step method that agrees with the findings from upwinding 

experiences, produces exactly the same results at steady state as those from 

the upwinding technique. These results prove the validity of Leismann and 

Frind's time step method. Therefore, the proper time step method should 

evaluate the motional induction term at the old time level and must include a 

time dependent artificial term. 

After the verification, this time step method is applied to a study of 

support plate signals from the variable reluctance probe as an example of a 

non-uniform geometry problem. Also, from the resulting solution, flux 

patterns are plotted as the probe passes a ferromagnetic support plate. These 

flux plots show a skin effect on the surface of the support plate which occurs 

due to motional induction currents. Therefore, this skin effect also supports 

the validity of the solution and the time step algorithm used. 

The fact that the probe movement in a non-uniform geometry causes a 

transient situation prevents the same analysis of AC steady state based eddy 

current methods. Therefore, the probe velocity in eddy current testing should 

be restricted to very low speeds. Also, new output variables for eddy current 

signals seem to be necessary for high speed moving inspection that are not 

defined under the sinusoidal steady state assumption. 

B. Future Work 

This dissertation considers only the axisymmetric model. However, this 

model suffers from a disadvantage in that only axisymmetric defects can be 

studied. Therefore, a 3-dimensional finite element model needs to be 
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developed. However, unlike 2-dimensional or axisymmetric problems, 3-

dimensional problems have tremendous difficulties in the matrix solution as 

well as mesh discretization. Especially for motional induction problems, 

spurious oscillations in the solution prevent the use of large elements. 

Although the upwinding technique can be used, this technique is limited to 

steady state problems and large elements basically give less accurate results. 

Hence, there is a certain limit in using the upwinding technique. For the 

matrix solution of transient problems, however, there is a way to avoid 

expensive matrix inversion or Gaussian elimination. That is, if the forward 

difference method together with a lumping technique is used, matrix 

inversion can be avoided and the solution time can be greatly reduced. Since 

the restriction on the motional induction term is to evaluate it at the old time 

level, the forward difference method can naturally be employed. 

One more suggestion in terms of the time step method is to investigate 

the proper time step size. Although stability analysis gives the general 

condition (i.e. grid Courant number less than or equal to 1), in the probe 

movement problem, the time step size is decided by the element length and 

the probe velocity. Therefore, if proper study of the time step size is made, 

optimal mesh discretization can be achieved. It seems that the time step size 

should be decided in relation to the diffusion time constant. 

Although the upwinding technique could provide only indirect 

information in this dissertation, it is a powerful tool to study velocity effects in 

uniform geometries. The velocities of NDE probes are also somewhat 

restricted, but other applications require very high speed. For example, the 

goal of current research in magnetically levitated vehicles is to achieve a 
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speed more than 225 mph (= 104 m/sec, so-called 'super-speed') [77]. 

Therefore, the induction sensors measuring the rail to vehicle gap would be 

affected greatly by velocity effects. Also, drag forces and lévitation forces need 

to be calculated in these areas. The up winding technique would show its 

effectiveness in such high speed applications. 
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